
Animal production in the USA is valued at more
than $100 billion and has consolidated signifi-
cantly during the last 20 years, with a larger
number of animals being produced on an
increasingly smaller land base (Kellogg et al.,

2000). Manure generated from animal produc-
tion is currently estimated to exceed 335 million t
of dry matter per year in the USA, while global
manure production is estimated at —13 billion t
of dry matter per year (Mullins et al., 2005).
Manures contain significant amounts of phospho-
rus, with values between 6.7 and 29.1 g P/kg on
a dry weight basis reported for several species
of animals (Barnett, 1994). This phosphorus
includes inorganic and organic forms, with the
latter constituting between 10°/a and 80% of the
total (Peperzak et al., 1959; Gerritse and Zugec,
1977). Inositol phosphates are one of the primary
organic phosphorus species found in manures,
with rrtyo-Inositol hexakisphosphate typically
being the most abundant (Peperzak el al., 1959;
Barnett, 1994; Turner and Leytem, 2004).

The environmental fate of phosphorus in
animal manures is determined in part by the
chemical composition of the phosphorus, yet few
studies have fully characterized manure phospho-
rus and determined the effect of the various phos-
phorus compounds on phosphorus behaviour in
soil. The various forms of organic phosphorus
differ in the extent of their sorption when applied
to soils, with triyo-inositol hexakisphosphate being
strongly hound while other organic phosphorus

compounds such as nucleotides, DNA and glu-
cose phosphates are more mobile (Celi and
Barberis, 2005), Phosphorus applied to soil as
manure may also behave differently from mineral
phosphate fertilizer, due to other chemical char-
acteristics of the manure. Organic matter in
manure can complex iron and aluminium via
organic ligands, which decreases the precipitation
of Inositol phosphates with these metals. It also
competes for sorption sites in soil, increasing
the concentration of phosphate in solution
(Iyamuremye et al., 1996). Inositol phosphates in
manure can also disperse soil colloids and there-
fore increase the potential for particulate phos-
phorus transport in runoff (see Celi and Barberis,
Chapter 13, this volume). Based on this evidence,
more detailed information on the lOrms of phos-
phorus in manures, as well as those manure
characteristics that influence phosphorus sorp-
tion, may shed light on the potential for off-site
losses of phosphorus from land application of
manure.

This chapter addresses environmental issues
concerning phosphorus and inositifl phosphates
in animal production. We summarize studies on
the phosphorus composition of manures, includ-
ing those using traditional extraction procedures
and the more recent application of nuclear mag-
netic resonance (NMR) spectroscopy. Finally, we
review how dietary modification and storage
alters the phosphorus composition of manures,
and explore the impact of such alterations on
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phosphorus solubility in soils and the potential 	 istics that determine phosphorus hehaviour
for phosphorus transfer in runoff. 	 following land application and the potential

changes induced by dietary modification.

Why is Manure Phosphorus an
Environmental Concern?

Consolidation of animal production can gener-
ate regional and farm-scale nutrient surpluses
where nutrient imports in feed and mineral fer-
tilizer exceed nutrient exports in crops and ani-
mal products (Sharpley el al., 1994; Sims et al.,

1998). These nutrient surpluses can in turn
increase the risk of nutrient loss to the environ-
ment and pollution of water bodies (Sharpley,
1996; Sims et al., 1998, 2000). Nutrients in
manures can be recycled by application to crop-
land, which reduces the need for commercial fer-
tilizers. Unfortunately, large amounts of manure
produced in localized areas, coupled with the
high cost of effective nutrient utilization strate-
gies in an unbalanced system, favour manure
disposal via land application in excess of crop
nutrient needs, rather than utilizing manure in
areas with nutrient deficiencies (Sharpley et al.,

1998).
Phosphorus is a particular concern, because

it can accumulate in soil to concentrations greater
than those needed for optimum crop production.
This is due in part to unfavourable nitrogen/
phosphorus ratios in manures relative to the
uptake of these nutrients by most crops, which
results in overapplication of phosphorus when
manures are applied to meet the nitrogen
requirement of the crop (Mikkelsen, 2000). As a
result, long-term manure application to agricul-
tural land leads to soil phosphorus accumulation
and greater potential for phosphorus transfer in
runoff to water bodies. This can contribute to
eutrophication in freshwater ecosystems, and
numerous examples of water quality impairment
associated with phosphorus pollution from ani-
mal operations now exist (Burkholder and
Glasgow, 1997; US Geological Survey, 1999;
Boesch it al., 2001). There is therefore an urgent
need to understand and reduce the impact of ani-
mal manures on the pollution of water bodies.
This demands a mechanistic mulerstanding of
the behaviour of manure phosphorus in soils and
its potential lbr phosphorus transfer in runoff.
Important aspects include the manure character-

Phosphorus Composition of
Animal Manures

Investigation of the dynamics of manure phos-
phorus following application to soils requires
information on the phosphorus composition
of the manure, One of the earliest studies of
manure characterization was performed by
Funatsu (1908), who used sequential extraction
techniques to fractionate the phosphorus in
guano. The procedure involved dilute acid to
extract inorganic phosphate, inositol phosphates
and other organic forms, followed by ether and
alcohol to extract phospholipids, with the residue
(unextracted fraction) being labelled as nucleic
acid. Variations of this procedure were subse-
quently used by others to characterize manures
from pigs fed a variety of feed rations (Rather,
1918), poultry and mixed farmyard manure
(Ghani, 1941), sheep manure (McAuliffe and
Peech, 1949) and fresh manure from horses, cat-
tle, sheep, pigs and hens (Kaila, 194-8). Organic
phosphorus in these studies ranged between 18%
and 50% of the total phosphorus, with the acid-
soluble organic phosphorus (which typically
included inositol phosphates) constituting
between 0% and 86% of the total organic frac-
tion.

Peperzak et al. (1959) used a similar sequen-
tial extraction procedure to determine the phos-
phorus composition of a variety of manures.
Total phosphorus concentrations ranged between
4 and 30 g P/kg dry weight, with the inorganic
fraction constituting 53--95% of total phosphorus
(Table 10.1). In this procedure, tffyo-inositol hexa-
kisphosphate was isolated from the acid extract
and was found to represent between 1% and
22' 1 - .0 of total phosphorus, with other acid-soluble
organic phosphorus lorms constituting between
3% and 4V/a. The alcohol-soluble fractions were
small (0.4 - 1.3%) while residual phosphorus val-
ues ranged between 2% and 27% of total phos-
phorus. When manures of different ages were
examined from a stockyard, the general trend
was a decrease in organic phosphorus from 49%
to 320/6 of total phosphorus over 20 years, with a
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Table 10.1. Concentrations of phosphorus compounds in sequential extracts of animal manures. (From
Peperzak et al., 1959.)

Animal
Total P

(g P/kg)

Phosphate
myo-lnositol

hexakisphosphate
Other acid-
soluble P

Alcohol-
soluble P Residual P

of total P

Chick 13-23 53-56 NDa 17-44 0.6-1.0 2-27
Hen 7-30 54-81 12-22 3-11 0.1-0.6 5-12
Sheep 12 63 2 19 0.4 16
Sow 11 83 0.6 13 0.5 3
Horse 4-7 73-95 1-2 14 0.8 2-20
Steer 8-12 60-64 7-10 12-13 1.0 13-19
Bull 9 76 0.5 8 0.7-1.0 14
Cow 4-7 67-87 1-5 7-25 1.3 3-14
Calf 5 62 3 17 0.4-1.3 17

°ND = not detected.

concomitant decrease in myo-inositol hexakispho-
sphate from 3.9% to 1.50/0 of total phosphorus.

Barnett (1994) published the most recent
comprehensive study on organic phosphorus com-
pounds in animal manures using conventional
sequential fractionation techniques. Organic
phosphorus in a variety of manures was fraction-
ated into phospholipids, nucleic acids, acid-solu-
ble organic phosphorus, inorganic phosphate and
residual phosphorus. Inorganic phosphate consti-
tuted the greatest proportion of the total phospho-
rus, followed in descending order of magnitude by
residual phosphorus, acid-soluble organic phos-
phorus and small amounts of phospholipids. In
this study the myo-inositol hexakisphosphate con-
tent was not directly measured, but the acid-solu-
ble organic phosphorus fraction, which typically
includes the inositol phosphates, ranged between
7.8% and 53.4% of the total phosphorus.

Interest in the environmental fate of manure
phosphorus prompted recent studies to adopt the
Hedley fractionation (Dou et al., 2000; Sharpley
and Moyer, 2000; Weinhold and Miller, 2004).
This procedure was originally developed to assess
phosphorus solubility in soil (Hedley et al., 1982)
and involves sequential extraction with water,
sodium bicarbonate, sodium hydroxide and
hydrochloric acid. Phosphorus extracted in water
and bicarbonate is considered readily soluble,
while that extracted in sodium hydroxide (assumed
to be associated with amorphous iron/aluminium
and organic matter) and hydrochloric acid

(assumed to be calcium phosphates) is considered
poorly soluble. However, several problems com-
promise the suitability of the Hedley fraction-
ation for manures. In particular, phosphorus
chemistry differs markedly between soils and
manures, being controlled commonly by iron and
aluminium oxides and calcium carbonate in soils
(Henley et al., 1982), and by association with cal-
cium and magnesium in manures (Cooperband
and Ward Good, 2002).

Turner and Leytem (2004) used solution
NMR spectroscopy to unequivocally identify
phosphorus compounds in the various fractions of
the Hedley extraction scheme as applied to poul-
try, swine and cattle manures. Two main groups
of phosphorus compounds were determined with
this procedure: a readily soluble fraction extracted
with water and sodium bicarbonate and a stable
fraction extracted with sodium hydroxide and
hydrochloric acid. Organic phosphorus in the
readily soluble fraction included DNA, phospho-
lipids and simple phosphate monoesters. Organic
phosphorus in the stable fraction consisted mainly
of myo-inositol hexakisphosphate. Since there was
considerable overlap between the extracts, the
authors recommended a simpler procedure con-
sisting of extraction with sodium bicarbonate to
remove the readily soluble fraction (which would
be most susceptible to transport in runoff),
followed by extraction with a solution contain-
ing sodium hydroxide and ethylenediamine
tetraacetate (EDT A) to recover the more stable

fraction. This ir
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fraction. This method gave near-quantitative
recovery of phosphorus from swine and poultry
manure (Turner, 2004; Turner and Leytem,
2004).

Solution 31 P NMR spectroscopy has been
used to quantify the phosphorus composition of a
wide variety of manures (Leinweber et al., 1997;
1,eytem et al., 2004; Maguire et al., 2004; Turner,
2004; Turner and Leytem, 2004; McGrath et al.,

2005). These studies indicate that manure phos-
phorus is predominately inorganic phosphate, fol-
lowed in descending order by phosphate
monoesters, phosphate diesters (nucleic acids and
phospholipid), pyrophosphates and, in some cases,
phosphonates. Concentrations of myo-inositol
hexakisphosphate ranged from non-detectable to
80% of the total phosphorus in manures from a
variety of ruminant (cattle and sheep) and mono-
gastric animals (poultry, swine; Table 10.2). Solid-
state 31 P NMR spectroscopy has also been applied
to manures (e.g. Hunger et al., 2004), but cannot
accurately assess the organic phosphorus fraction.

As demonstrated by both sequential fraction-
ation and solution 31 P NMR spectroscopy, the
ago-inositol hexakisphosphate content of manures
can vary widely, both among and within species
(Table 10.2). There arc physiological differences
between ruminant and monogastric animals that
can account for these differences. The diets of
monogastrie animals often include large amounts
of cereal grains, in which much of the phosphorus
occurs as salts of myo-inositol hexakisphosphate
(phytate); for example, approximately two-thirds
of the phosphorus in maize and soybeans is in this
firm (see Raboy, Chapter 8, this volume). As
nnmogastric animals do not possess ample gut
phytase (McCuaig et al., 1972), manures from
poultry and pigs can contain large amounts of
undigested phytate (although see Leytem et al.,
2004). In contrast, ruminant animals have the
capacity to hydrolyse inositol phosphates in their
diet, and manures from annuals fed grass or
lucerne-based diets contain little phytate.
However, there is evidence that for ruminants
a grain-based diet, metal complexation can pre-
vent extensive hydrolysis of niyo-inositol hexak-
isphosphate and allow it to pass through the
animal intact (see Dao, Chapter I I, this volume).

Dietary effects are also evident within a
given species. For example, manure from laying
hens fed maize with varying levels of non-phytate

phosphorus, with and without phytase additions,
can contain a wide range of now-inositol hexak-
isphosphate concentrations (35-80% of total
phosphorus, whereas manure from broilers fed a
diet consisting mainly of barley contains closer to
10% of total phosphorus in this form (Table 10.2).
This indicates the importance of determining
dietary impacts on the composition of manure
phosphorus excreted from the animal to assess the
potential behaviour of manure phosphorus once
applied on land. Since it has been demonstrated
that inositol phosphates can sorb strongly to soils
(see Celi and Barberis, Chapter 13, this volume),
changes in the concentration of nryo-inositol hexa-
kisphosphate in manure could be of concern from
an environmental standpoint (discussed later).

Impact of Dietary Manipulation
on myo-Inositol Hexakisphosphate

in Manure

As monogastrie animals cannot fully utilize phy-
tate in cereal grains, mineral phosphate supple-
ments are commonly added to their diets to
prevent phosphorus deficiency. As described
above, this increases phosphorus concentrations
in manure and can lead to phosphorus accumu-
lation in soils when manure phosphorus is
applied in excess of crop phosphorus removal
(Sims et al., 2000).

To address concerns regarding surplus phos-
phorus in manure, strategies involving dietary
manipulation are being widely adopted to reduce
manure phosphorus concentrations (see Lei and
Porres, Chapter 9, this volume). By reducing phos-
phorus excretion, manures with nitrogen/ phos-
phorus ratios more closely matching the nutrient
needs of crops can be generated, thereby reducing
overapplication of phosphorus and build-up of soil
phosphorus. For monogastric animals that have a
limited ability to digest phytate, dietary strategies
include the isolation of mutant grains that store
most of the ultra phosphorus in the grain as inor-
ganic phosphate and less as phytate (Raboy et al.,
2000; Dorsch et at., 2003, see Raboy, Chapter 8,
this volume), thereby enhancing phosphorus
uptake by the animal and reducing the excreted
phosphorus (Spencer et al., 2000; Veum el al., 2002;
fang et al., 2003; Klunzinger et al., 2005). Supple-
mentation of animal feeds with microbial phytase is
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Table 10.2. Concentrations of phosphorus compounds in extracts of manures from a selection of
animals determined by solution 3 'P NMR spectroscopy. (From Leytem at al., 2004, 2005, 2006 and
unpublished data; Maguire et al., 2004.)

Total	 Phosphate	 Pyro-
phosphorusa Phosphateb 	monoestersb 	phosphate b

myo-lnositol
hexakisphosphateb

g P/kg dry wt

13.46 (97) 13.02 (94) 0.67 (5) 0.13 (1) Tr

30.00 (99) 29.15 (97) 0.75 (3) 0.09 (<1) ND

6.36 (99) 4.46 (70) 1.92 (30) ND 0.74 (12)

15.61 (96) 7.21 (46) 8.19 (53) 0.21 (1) 7.61 (49)

9.49 (99) 1.22 (28) 8.17 (86) 0.10(1) 7.62 (80)

9.61 (98) 5.33 (56) 4.04 (42) 0.13(1) 3.39 (35)

13.90 (98) 5.71 (41) 8.38 (60) 0.06 (<1) 7.83 (56)

10.40 (96) 5.05 (49) 5.74 (55) ND 4.88 (47)

15.40 (87) 10.90 (71) 6.74 (44) 0.14 (1) 5.09 (33)

12.80 (94) 8.56 (67) 4.82 (38) 0.14 (1) 3.45 (26)

8.80 (93) 7.93 (90) 0.82 (9) 0.06 (<1) 0.37 (4.2)
2.50 (98) 2.28 (91) 0.22 (9) 0.004 (<1) 0.03 (1)
4.20 (99) 2.51 (60) 1.60 (38) 0.09 (2) 0.34 (8)

4.10 (83) 2.65 (65) 1.0 (25) 0.25 (6) ND

8.45 (91) 5.52 (65) 1.68 (20) 0.41 (5) 0.47 (6)

'Values are total phosphorus extracted by sodium hydroxide and ethylenediaminetetraacetate (EDTA), and values in
parentheses are the proportion (%) of the total manure phosphorus determined by microwave digestion.
'Values in parentheses are the proportion (%) of the extracted phosphorus.
NPP = non-phytate phosphorus.

Tr = trace; ND = not detected.

Manure

Swine manure,
fresh (barley
feed)

Swine lagoon
liquid

Broiler manure
(barley feed)

Broiler manure
(standard
maize diet)

Broiler manure
(maize, low
NPP0)

Broiler manure
(maize, low
NPP + phytase)

Broiler litter
(maize, high
NPP)

Broiler litter
(maize, high
NPP + phytase)

Turkey litter
(maize, high
NPP)

Turkey litter
(maize, high
NPP + phytase)

Dairy lagoon liquid
Dairy compost
Beef manure

(maize-fed)
Beef manure

(pasture-fed)
Sheep (barley-fed)
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also used to increase phytate hydrolysis in the gut,
thereby enhancing phosphorus utilization by the
animal (Cromwell et al., 1993; Coelho and
Koniegay, 1996; see Lei and Porres, Chapter 9,
this volume). The combination of low-phytate

grains with phytase additions is also utilized to
further reduce phosphorus excretion.

In addition to reducing the concentrations
of phosphorus in manure, dietary modification is
expected to influence manure phosphorus com-

Mai
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position, which may have implications for the
environmental fate of manure phosphorus
(Turner el al., 2002). Potentially the greatest
impact of diet modification in monogastric ani-
mals on phosphorus fOrms in manure is likely to
be changes in the amount of phytate excreted,
with a corresponding increase in the proportion
of the manure phosphorus that occurs as water-
extractable phosphate. 'Elms, as diet modification
reduces the proportion of the manure phospho-
rus occurring as myo-inositol hexakisphosphate,
the proportion of water-extractable phosphate in
the manure increases as a fraction of total phos-
phorus, even though the total phosphorus con-
centration may be reduced. This is particularly
evident fin- poultry manures (Fig. 10.1) and may
be important when manures are applied to land
on the basis of phosphorus content, as is now
cominon in several states in the USA.

Feeding low-phytate grains

Mutant grains that contain substantially less phy-
tate than the wild-type equivalent that has tradi-
tionally been led to animals (Raboy et al., 201)0;
1)orsch el al., 2(1)13; see Raboy, Chapter 8, this
volume ) have recently been developed. Ai pres-
ent there are low-phytate varieties of maize, bar-
ley and soybean meal that can be used in feed
formulations. Low agronomic yields of these
mutant grains have prevented wide adoption, Inn
future improvements are likely, and these grains

80

••
•

♦ °
•

•
♦

0	 20	 40	 60	 80

Manure phytate (970 total P)
Fig. 10.1. The effect of phytate concentration on
water-extractable phosphorus in manures from
modified poultry diets. (From Maguire et al., 2004;
Toor et al., 2005; Leytem et al., 2006.)

will be useful for developing strategies to reduce
phosphorus excretion by monogastric animals.
Large reductions in total phosphorus excretion
can be achieved using these grains (Spencer et al.,
2000; Li et al., 2001; Venn et al., 2002; Jang
et al., 2003; see Lei and Porres, Chapter 9, this
volume), although only a few studies have deter-
mined their impact on phosphorus composition
in manure. Toor et al. (2005) reported a decrease
of only 109/0 in excreted total phosphorus from
broilers fed diets containing normal maize vs.
low-phytate maize, although there was a 47°./0
reduction in the am ount of mho-inositol hexak-
isphosphate excreted by the birds. Baxter et al.
(20(13) saw the same trend fOr swine fed low-phy-
tate maize; total phosphorus excretion was only
slightly reduced, but myo-inositol hexakisphos-
phate excretion was reduced by almost 50°/0.

When low-phytate barleys were included in
broiler diets, manure total phosphorus concentra-
tions were reduced by 14 24% (Leytem el al.,
2006b; Table 1(1.3). However, myo-inositol hexak-
isphosphate concentrations in manures from all
dietary treatments constituted only 3 I2% of the
total phosphorus in the manure, even when as
much as 91% of total phosphorus in the feed was
phytate. This same trend was also reported for
swine in ;t similar study; total phosphorus excretio n
was reduced by –33% when animals were fed low-
phytate diets, yet myo-inositol hexakisphosphate was
excreted only in trace amounts (Leytem it al., 21)04;
Table 10.3). This indicates that even though mono-
gastric animals do not possess sufficient phytase to
hydp tlyse phytate in the part of the digestive tract
where phosphorus sorption takes place, the phytate
is not necessarily excreted by the ;mitnal.

A possible explanation is that barley diets
contain high intrinsic phytase activity (see [xi
and Porn's, Chapter 9, this volume), which might
lead to phytate hydrolysis in the animal.
However, in a study of swine manure from ani-
mals led diets containing wild-type and low-phy-
tate maize, which contains little intrinsic phytase,
most of the excreted phosphorus (-80% of total
phosphorus) was inorganic phosphate and there
was little difference in the manure fractions
across dietary treatments (Weinhold and Miller,
2004). A more likely explanation, therefOre, is
ihat phytate is hydrolysed in the hindgut by intes-
tinal mierollora, even though the animals derive
little nutritional benefit from this process in the
lower intestine.
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Table 10.3. Phosphorus concentrations in poultry and swine manure fed either a wild-type barley
(Copeland and CDC Bold) or mutant barley with reduced amounts of grain phytic acid content (M 422,
M 635, M 955). Phosphorus concentrations were determined by extraction in sodium hydroxide and
ethylenediaminetetraacetate (EDTA) and solution 31 P NMR spectroscopy. Means in the same column (for
each animal type) followed by the same letter do not differ significantly (P> 0.05). (From Leytem et al.,
2004; Leytem, A.B., Thacher, RA. and Turner, B.L., 2006, unpublished data.)

Feed phytate
(% total

Grain type	 phosphorus)

Copeland
M 422
M 635
M 955

CDC Bold
M 422
M 635
M 955

Feeding microbial phytase as a
supplement

There are several different types of phytase
enzymes (see Mullaney and Ullah, Chapter 7,
this volume), although they all catalyse the
release of phosphate residues from myo-inositol
hexakisphosphate. Phytase supplements are now
a common component of animal diets and have
been successful in reducing phosphorus concen-
trations in manures (see Lei and Porres, Chapter
9, this volume). However, the effects on manure
phosphorus composition and therefore manure
phosphorus behaviour in soils are poorly under-
stood.

It would be expected that manures from
diets that included phytase would have less myo-
inositol hexakisphosphate than equivalent diets
without phytase. This was the case in a study of
manures from swine fed diets with and without
phytase (Baxter et al., 2003). Concentrations of
myo-inositol hexakisphosphate in fresh swine
manure were decreased by 2.0-3.9 g P/kg by

adding phytase to the feed. However, during
storage of manure from the normal diet for 150
days, myo-inositol hexakisphosphate as a percent-
age of total phosphorus decreased from 15.5°/0 to
8.5%, which was attributed to microbial degra-
dation. For the phytase-amended diet the
decrease in myo-inositol hexakisphosphate during
storage was only between 9.1% and 9.8%, indi-
cating hydrolysis by the added phytase prior to
excretion (Baxter et al., 2003). Therefore, after
150 days of storage, there was no significant dif-
ference in myo-inositol hexakisphosphate concen-
trations in swine manures from the two diets.

Maguire et al. (2004) grew three flocks of
broilers and two flocks of turkeys on the same
bed of litter using diets that were 'high' and 'low'
in non-phytate phosphorus with and without
phytase additions. Concentrations of myo-inositol
hexakisphosphate in both broiler and turkey
litters from diets that included phytase were
consistently lower than in litters from equiva-
lent non-phytase diets (Table 10.4). Inorganic
phosphate levels in the broiler and turkey litters

NaOH-EDTA extractable P (g P/kg dry wt)

myo-lnositol
	Phosphate	 hexakis-
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Poultry (broiler chicks)

91 6.36 (99)a 4.46 (70)a 1.92 (30)a 0.74 (12)a
40 4.48 (93)c 3.42 (69)c 1.53 (31)b 0.34 (7)ab
37 4.93 (92)bc 3.20 (72)c 1.29 (29)b 0.34 (8)ab
<1 5.15 (92)b 3.88 (75)b 1.24 (24)b 0.14 (3)b

Swine (barrows)

55 13.46 (97)a 13.02 (94)a 0.67 (5)a Tr
50 8.55 (95)b 7.77 (86)b 1.08 (12)a Tr
26 8.05 (91)b 7.59 (86)b 1.08 (12)a Tr

3 8.36 (95)b 7.78 (88)b 0.91 (11)a ND

'Values in parentheses are the proportion (%) of the total manure phosphorus determined by microwave digestion.
bValues in parentheses are the proportion (%) of the NaOH-EDTA extracted phosphorus.
'Values for phosphate monoesters Include myo-inositol hexakisphosphate and other monoesters.
Tr, trace; ND, not detected.
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were largely unaffected by dietary phytase. This
was most likely due to the benefit of decreased
dietary inorganic phosphate supplements being
cancelled out by the increased phytate hydrolysis
by dietary phytase.

McGrath et al. (2005) determined myo-inosi-
tol hexakisphosphate in litters from broilers fed a
variety of diets with and without phytase addi-
tion, and found that concentrations were lower in
litter from diets containing phytase than from
diets without phytase (Table 10.4). Toor et al.

(2005) analysed turkey manure and broiler litter
samples from diets with and without phytase
using X-ray absorption near-edge structure spec-
troscopy. Although detection of organic phos-
phates was difficult using this technique, the
authors concluded that dietary phytase addition
decreased myo-inositol hexakisphosphate concen-
trations in manures and litters, and that dical-
cium phosphate was the most abundant form of
phosphorus present.

There has been some discussion in the litera-
ture as to whether residual dietary phytase will
continue to hydrolyse myo-inositol hexakisphos-
phate in manures following excretion, hence
making phosphorus more water-soluble. Angel
et al. (2005) used combinations of boiling poultry
and swine manures, or added antibiotics, to show
that dietary phytase supplementation had no
effect on phytate hydrolysis following excretion.
These authors concluded that the 'increase in
water-soluble phosphorus as a percent of total
phosphorus post excretion is a function of excreta
microbial activity and not dietary phytase addi-
tion' (Angel el al., 2005). McGrath et al. (2005)
stored broiler litters generated from diets 'high'
and 'low' in phosphorus, with and without phy-
tase, at two diffi)rent moisture contents for 440
clays. By comparing the interactions of storage
time and moisture, they showed that nyo-inositol
hexakisphosphate concentrations decreased
through time only in litter that was stored 'wet'.
This was unrelated to dietary phytase and was
instead attributed to enhanced microbial activity
in the wet litter (McGrath et al., 2005). Maguire
et al. (2006) fed broiler breeders diets 'high' and
'low' in dietary non-phytate phosphorus, with
and without phytase. Soluble phosphorus was
similar in manure from under the feeder as in a
clean area, indicating no effect of spilled feed
whether or not it included phytase. However,
under the drinker, manure moisture and soluble

phosphorus were higher irrespective of the diet,
presumably due to increased microbial activity
breaking down myo-inositol hexakisphosphate
into more soluble forms. The effects of manure-
derived phytase in soils are unknown, although
discussion of the interactions of phytase with soil
constituents can be found elsewhere in this vol-
ume (see George et al., Chapter 14).

Combining low-phytate grains
and phytase

In addition to research on low-phytate grains or
phytase alone, a few studies have investigated a
combination of low-phytate grains and phytase.
Baxter et al. (2003) reported that such a combin-
ation decreased myo-inositol hexakisphosphate
fresh swine manures more than either approach
individually (Table 10.5). This trend was also
seen in broiler litters, in which myo-inositol hexak-
isphosphate decreased front 20% of total phos-
phorush	 in normal maize diet to 12% and 10°%h	 a
in diets containing low-phytate maize and low-
phytate maize plus phytase, respectively (Toor
et al., 2005; Table 10.5). Other studies combined
phytase and low-phytate grains in poultry diets
and reported reductions of 27 45% of total phos-
phorus and 27 49 0/0 of water-extractable phos-
phate in the litter, although none determined
tryo-inositol hexakisphosphate directly (Applegate
et al., 2003; Miles et al., 2003; Penn et al., 2004).

Manure phosphorus composition
and phosphorus solubility in soil

Manipulating the diets of monogastric animals
can have a large impact on the amount of nqo-

inositol hexakisphosphate excreted from swine,
poultry and fish. In addition, storage of manure
prior to land application can also influence inosi-
tol phosphate concentrations by promoting
microbial degradation. This raises an important
question: Do differences in inoshol phosphate
concentrations influence the solubility and poten-
tial transport of manure phosphorus to water
bodies following application to soil?

Release of soluble phosphorus from manure-
amended soil varies considerably depending
on the source of the manure applied (i.e. animal
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Table 10.5. Dietary studies utilizing low-phytate grains with and without the addition of phytase and the
effect on manure phytate content. Means followed by the same letter (within column for each study) are
not significantly different at P= 0.05.

Animal Diet

Total P WSPa
WSP/total P

ratio
Phytate/total P

ratio

ReferencePhytase g P/kg dry weight

Broiler Normal maize No 22.4a 12.6 0.56 20 Toor et al.
(2005)

Broiler Low-phytate
maize

No 20.1b 13.5 0.67 12

Broiler Low-phytate
maize

Yes 15.7c 12.0 0.76 10

Swine Normal maize No 25.5a 11.9a 0.47 15 Baxter et al.
(2003)

Swine Low-phytate
maize

No 20.7b 10.8a 0.52 8

Swine Low-phytate
maize

Yes 15.2c 7.9b 0.52 5

°WSP = water-soluble phosphate in manure.

species, diets led, manure handling and storage).
This is primarily due to differences in the concen-
trations of total and soluble phosphorus in the
manure (Sharpley and Moyer, 2000; Kleinman
et al., 20(12a,b; Vadas et a/., 2004), but may also be

due in part to variability in other physical and
chemical properties of the manure. Inorganic
phosphate is relatively soluble in soils compared
to riyo-inositol hexakisphosphate, which is strongly
retained and unlikely to be lost as soluble phos-
phorus in runoff (Anderson el al., 1974; Leytem
el al., 2002). Therefore, variability of the phospho-
rus composition of manures, either due to differ-
ences in species, manure-handling techniques or
through dietary manipulation, could increase
phosphorus transport from land-applied manures
to water bodies (Vadas et a/., 2004).

When a variety of manures (swine, dairy and
beef cattle manures that were handled/stored dif-
ferently) were incorporated into semiarid calcare-
ous soils, there was no significant correlation
between myo-inositol hexakisphosphate content
(ranging between 0% and 8 o of total phospho-
rus) and soil phosphorus solubility (Leytem and
Westermann, 2005; Fig. 10.2a). In this instance,
the small amounts of myo-inositol hexakisphos-
phate in the manures were probably insufficient
to influence phosphorus solubility in the soil.
Instead, phosphorus solubility was clearly influ-

enced by the amount of carbon added to the soil
(Fig. 10.2h).

When poultry manures were added to a
similar calcareous soil, the amount of myo-inositol
hexakisphosphate in the manures, which ranged
between 35% and 80')/o of total phosphorus,
was strongly and negatively correlated with
bicarbonate-extractable soil phosphate, following
manure application (Fig. 10.3a). Manures were
applied at the same total phosphorus rate, so this
correlation was almost certainly due to the
greater proportion of water-soluble phosphate
added in manure with lower myo-inositol hexak-
isphosphate concentrations. However, the rela-
tionship was transient, becoming insignificant
after 9 weeks of incubation (Fig. 10.31)). This
demonstrates clearly that when manures are
applied on the basis of phosphorus content, the
proportion of nfro-inositol hexakisphosphate, and
therefore of water-soluble phosphate, has a
strong influence on the solubility of the manure
phosphorus soon after application.

Extractable phi ispha le concentrations
increased between the second and ninth week of
incubation and were correlated with the amount
of mro-inositol hexakisphosphate in the manures.
In other words, man tires with more myo-inositol
hexakisphosphate caused greater increases in
extractable soil phosphate over time. Analysis of
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the manure-amended soils immediately following
incorporation (Fig. 10.4a) and after 9 weeks of
incubation (Fig. 10.4b) using solution 31 P NMR
spectroscopy demonstrated the hydrolysis of myo-
inositol hexakisphosphate in the soil, strongly
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Manure carbon/phosphorus ratio

suggesting that this was responsible for the
increase in extractable phosphate.

Although rnyo-inositol hexakisphosphate is
strongly bound in soils, microbes in the semiarid
calcareous soil were able to break it down into
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Fig. 10.2. Relationship between bicarbonate-extractable phosphate and (a) manure phytate
concentration and (b) manure carbon/phosphorus ratio for six manures of varying origin added to a
calcareous arable soil (Portneuf silt loam) from Idaho, USA, containing 0.75% organic carbon, pH 7.6
and 18% clay. (From Leytem and Westermann, 2005.)
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Fig. 10.3. Relationship between the phytate concentration in poultry manure and the bicarbonate-
extractable phosphate in manure-amended soil following (a) 2 weeks of incubation and (b) 9 weeks of
incubation. The soil was a calcareous arable soil (Portneuf silt loam) from Idaho, USA, containing 0.75%
organic carbon, pH 7.6 and 18% clay. (From Leytem et al., 2006.)
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Flg. 10.4. Solution 31 P nuclear magnetic resonance
(NMR) spectra of extracts of a soil amended with
poultry manure (a) immediately following incorpora-
tion and (b) after 9 weeks of incubation. The peak
at 6.3 ppm is inorganic phosphate, while the other
four labelled signals are from myo-inositol
hexakisphosphate. The spectra demonstrate the
relatively rapid hydrolysis of manure-derived myo-

inositol hexakisphosphate in soil. (From Leytem
et al., 2006.)

inorganic phosphate within a few weeks. It would
therefore not be expected to accumulate in these
soils following successive manure applications.
This confirms the evidence for the relative
bioavailability of inositol phosphates in calcare-
ous soils (Turner et al., 2003) and may explain
why some contain no detectable phytate (see
Turner, Chapter 12, this volume). In contrast,
the same manures applied to an acidic soil
showed no correlation between added manure
myo-inositol hexakisphosphate and extractable
soil phosphate (Mehlich-3 extraction) on any of
the sampling dates, with only the manure car-
bon/phosphorus ratio being correlated to the
extractable phosphate concentrations (12 = 0.84
at 2 weeks of incubation; data not shown).

The solubility of phosphorus in manure-
amended soils seems to be influenced by the
characteristics of the manure applied. In the

short term, manures with large concentrations of
myo-inositol hexakisphosphate can demonstrate
lower phosphorus solubility on calcareous soils,
although this trend does not seem to hold true for
acidic soils. However, due to microbial break-
down of myo-inositol hexakisphosphate in applied
manures and concurrent release of soluble phos-
phate, these differences are likely to become
insignificant over time. Other manure properties,
particularly the carbon content, seem to exert a
large influence on phosphorus solubility following
application to both calcareous and acidic soils
(Leytem et al., 2005), presumably due to stimula-
tion of the microbial biomass and fixation of
phosphorus in microbial tissue. This means that
the addition of manure results in a lower soluble
phosphorus concentration than would be
expected from mineral phosphate fertilizer appli-
cation. It therefore follows that in the long term
the most important factor to consider for land
application of manures is total phosphorus,
rather than the form of the phosphorus applied.

An important impact of manure inositol
phosphates on the loss of phosphorus to water
bodies involves erosion and transport of particu-
late phosphorus. Erosion can be severe on agri-
cultural land and is potentially responsible for the
movement of large amounts of inositol phosphates
to water bodies (see McKelvie, Chapter 16, this
volume). Erosion can be promoted by inositol
phosphates in manures due to the dispersion of
soil colloids following sorption to soil components
(see Ccli and Barberis, Chapter 13, this volume).
There is almost no information on inositol phos-
phate transport in particulate material from agri-
cultural land, and it is not discussed further here.
However, several stereoisomeric forms of inositol
hexakisphosphate have been reported from river-
ine-suspended solids (Suzumura and Karnatani,
1995). More infbrmation can he found in a
detailed review of organic phosphorus transfer
from soils to water bodies (Turner, 2005).

Dietary Manipulation and the
Environmental Fate of Manure

Phosphorus

Manures from low-phytate feed

Although the total phosphorus excreted from
monogastric animals ied a variety of low-phytate
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grains has been shown to be significantly
reduced, the impacts of these manures on poten-
tial phosphorus losses following long-term appli-
cation to agricultural land have not been studied.
One of the primary reasons for this is the lack of
sufficient quantities of manure needed for field-
scale assessments, particularly multi-year projects.
Investigation is therefore limited to laboratory-
scale studies.

Gollany et al. (2003) showed a 10°/a reduc-
tion in manure phosphorus availability when
manure from swine fed low-phytate maize-based
diets vs. normal maize diets was incorporated
into a silt loam soil. Leytem et al. (2005) incorpo-
rated manure from swine fed a variety of low-
phytate barley-based diets and found no
significant relationship between the amount of
nuto-inositol hcxakisphosphate added in the
manures and bicarbonate-extractable phosphate
in soil (Fig. 10.5a). However, as with previous
studies, there was a strong relationship between the
amounts of carbon added with the manures and
the bicarbonate-extractable phosphate (Fig. 10.5b).
As the amount of phosphorus excreted by ani-
mals fed low-phytate grains is reduced, there is a
corresponding increase in the manure carbon/
phosphorus ratio, which can enhance the stabi-
lization of phosphorus in manure-amended soils
compared with soils amended with manures from
normal grain-based diets. Therefore, even when

applied on the same total phosphorus basis, there
is a potential environmental benefit to feeding
low-phytate grains when the subsequent manures
are land-applied, at least in the short term.

Manures from phytase-amended feed

Studies have consistently shown reductions in
manure total phosphorus and noto-inositol hexak-
isphosphate from swine and poultry that have
been ( led diets with phytase, but only when, as
recommended, inorganic phosphate supplemen-
tation is reduced to account fbr enhanced phos-
phorus availability due to phytase addition.
However, there has been some disagreement
over the effect of added phytase on manure
water-extractable phosphate, which is important
because it is linked directly to phosphorus losses
in runoff (Maguire et al., 2005a). Dietary phytase
addition can decrease total manure phosphorus
concentrations by as much as 45% for poultry
and 40"/o for swine (see Lei and Porres, Chapter
9, this volume). These reductions are important,
as total phosphorus determines build-up or
decline in soil test phosphorus following land
application of manures. This is particularly true
where manure is applied on the basis of intro-
gen content the effects of changes in manure
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phosphorus composition are therefore only likely
to become relevant when manure is applied on
the basis of phosphorus content.

Several studies have surface-applied manures
and litters derived from phytase-amended diets
and measured phosphorus in runoff Smith el al.

(2004a) reported that although dietary phytase
additions decreased the water-extractable phos-
phate in swine manure, this had no significant
effect on soluble phosphorus losses in runoff from
manured soils, relative to manure from a non-
phytase-amended diet. This was surprising
because equivalent weights of manures were
applied, so manures with smaller concentrations
of water-soluble phosphate (i.e. from phytase-
amended diets) were expected to yield less soluble
phosphate in runoff In a similar study, however,
soluble phosphate concentrations in runoff imme-
diately following the application of poultry litter
from a phytase-amended diet were lower than
from soils that received litter from a normal diet
(Smith et al., 2004h). Again, manure was applied
on a weight basis and, importantly, the effect
became insignificant when three consecutive rain-
fall events were included. It should be noted that
in both studies the application of alum (alu-
minium sulphate) to the litters considerably
reduced soluble phosphate in litter and in runoff
fidlowing litter application to MA In one study in
which dietary phytase significantly increased
manure water-extractable phosphate, Vadas et al.

(2004) reported no significant differences in solu-
ble phosphate concentrations in runoff between
soils amended with poultry manures from phytase
and non-phytase-amended diets, even when
manures were applied at the same total phospho-
rus rate.

Using turkey and broiler litters from equiva-
lent phytase- and non-phytase-amended diets,
Maguire et al. (2004, 20051)) fOund that dietary
phytase decreased nfro-inositol hexakisphosphate
in litters, but generally had little effect on manure
inorganic phosphate or soluble phosphate losses
in runoff when manures were incorporated into
soil prior to rainfall. This occurred whether litter
was applied on the basis of nitrogen or phospho-
rus content. Where more than one runoff event
was conducted, soluble phosphate losses
decreased as the number of runoff events
increased, and the elli.cts of diet and manure
characteristics became less significant. These data
highlight the point that the soluble phosphorus in

manure has a greater impact on runoff soluble
phosphate concentrations in the short term than
in the long term (Penn et al., 2004; Smith et al.,
2004b; Maguire et al., 2005h). However, we still
must consider the fact that long-term land appli-
cation of manures results in the accumulation of a
large pool of phosphorus, which may he available
for release to runoff water over time. The reduc-
tion in total manure phosphorus with phytase
additions has the long-term benefit of reducing
total phosphorus additions to fields receiving con-
tinual nitrogen-based manure applications that
overapply phosphorus compared to crop needs.

Manures from low-phytate grains
and phytase-amended feeds

As already discussed, combining low-phytate
grains and phytase was shown to result in greater
reductions in manure total phosphorus than
either strategy on its own. It has also been shown
to reduce water-extractable phosphate by
27 -49% )Maguire et al., 2005a). Smith et al.
(2004b) reported that adding phytase to poultry
diets containing low-phytate maize led to less sol-
uble phosphate in runoff compared to that from a
nonnal diet, but was not diflia'ent to solulde phos-
phate in runoff from diets containing phytase or
low-phytate maize on their own when manures
were surface-applied at the same total phosphorus
rate. Penn et al. (2004) observed similar concentra-
tions of soluble phosphate in runoff from soils
receiving surface application of turkey manure
(same total phosphorus applied) from normal or
low-phytate maize plus phytase diets. As there are
only a limited number if studies measuring runoff
from soils amended with these manures, it is too
early to draw firm conclusions. However, the con-
sistent reduction in total phosphorus and water-
extractable phosphate in the manures suggests a
clear benefit in terms of water quality.

Summary

Research to date has shown manure composition
to he heavily dependent on both animal species
and diet. In particular, differences in feed compo-
sition and phytase supplementation mean that
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manures from monogastric animals contain a
wide range of myo-inositol hexakisphosphate con-
centrations. However, manure tends to be stored
for long periods of time prior to land application,
which allows microbial activity to break down a
large fraction of the myo-inositol hexakisphos-
phate. This creates manures that have low myo-

inositol hexakisphosphate concentrations when
they are eventually land-applied. An important
consequence is that other manure characteristics,
such as the carbon/phosphorus ratio, may have a
greater influence on subsequent phosphorus solu-
bility in the short term than the phosphorus com-
position of the manure upon excretion from the
animal. This must be considered when assessing
the effects of dietary manipulation on the envir-
onmental impact of manure phosphorus.

When manure is applied to soil, a variety of
factors can influence the phosphorus solubility
and the potential for phosphorus transport to
water bodies. In the case of surface-applied
manure, the water-extractable phosphate concen-
tration has the greatest influence on soluble phos-
phate losses when rainfall immediately follows
manure application. When manures are incorp-
orated into soils, other factors control phosphorus
solubility and the potential for phosphorus losses
to water bodies. In calcareous soils with low
organic matter contents, phosphorus sorption can
be influenced in the short term by the myo-inositol
hexakisphosphate content of the manure, because
manure with large concentrations of myo-inositol
hexakisphosphate lead to small increases in soil
phosphate solubility compared with manures
dominated by inorganic phosphate. However, this
effect is reduced as myo-inositol hexakisphosphate
undergoes hydrolysis and contributes to the
extractable phosphate pool, at which point other
factors, such as the manure carbon/phosphorus
ratio, determine differences in phosphate solubil-
ity. In contrast, when manures are applied to
acidic soils, there seems to be no influence of rigs-

inositol hexakisphosphate content on extractable
soil phosphate, and other manure characteristics
may have a greater influence on phosphorus solu-
bility. In situations where phosphorus losses are
dominated by soil erosion and particulate phos-
phorus losses, the phosphorus concentration in
the soil will overwhelm any influence of the
applied manure phosphorus forms.

Concern has been expressed about the
potential negative environmental implications of

diet alteration on phosphorus losses from manure-
amended soils, but given the urgent requirement
to reduce total phosphorus concentrations in
manures in areas of high livestock density, dietary
manipulation is overwhelmingly beneficial.
Such manipulation may increase the proportion
of the manure phosphorus that is soluble in water,
but this is likely to have negative environmental
consequences only when manure is applied on a
phosphorus basis and without prolonged storage
prior to land application. If manures are applied
on an equivalent weight or nitrogen basis, diet
modification will result in less total phosphorus
being added to soils and therefore a reduction in
soil test phosphorus build-up over time. This in
turn decreases the risk of phosphorus transfer to
water bodies. In addition, most research indicates
a reduction or no increase in phosphorus losses in
runoff from soils amended with manures from
modified diets compared with normal diets, when
these are applied on an equivalent phosphorus
basis (surface application or incorporation of
manures). It therefore seems likely that in most
cases there is no enhanced environmental risk
from dietary modification and associated changes
in manure phosphorus composition.

Future Research Needs

There is an increasing body of research aimed at
understanding the influence of manure phospho-
rus composition on the potential environmental
impacts related to land application of manure. At
present, few studies have determined manure
phosphorus composition using techniques such as
solution NMR spectroscopy, yet this informa-
tion provides valuable insight into the behaviour of
phosphorus in manure after land application and
can help identify the potential risks of modifying
manures through diet manipulation.

The study of dietary impacts on manure
phosphorus composition and subsequent environ-
mental risk is becoming more important. There
are few studies that have detailed the impacts of
altering animal diets on manure phosphorus
composition, and these have focused primarily on
phosphorus in feeds (i.e. non-phytate phosphorus
levels and the use of phytase). Dietary com-
ponents, such as the calcium/phosphorus ratio
in feeds, micronutrient additions and carbon
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composition of feeds, can alter the manure
phosphorus composition and influence water-
extractable phosphate, but have not been investi-
gated in detail (see also Da°, Chapter 11, this
volume). There is evidence that calcium and
other divalent cations often found in micronutri-
ent supplements can bind with myo-inositol hexa-
kisphosphate, making both less available during
digestion (Maenz et al., 1999). Future studies
should therefore look beyond just dietary phos-
phorus in order to understand the extent to
which we can alter the phosphorus composition
in manures and maximize the benefits of dietary
manipulation.

The use of low-phytate grains in animal
feeding operations has received considerable
interest (see Raboy, Chapter 8, this volume) and
further research will be necessary as new grains
become available, especially as these become
economically viable. Low-phytate grains have an
advantage over phytase addition, because they

minimize the interference that dietary inputs
(such as calcium and other micronutrients) may
have on phytate digestion and phytase efficacy.
An important drawback at this point to using
low-phytate grains is the issue of identity preser-
vation (ability to keep low-phytate grains separate
from other grains during processing), which will
hopefully be overcome in the future.

Now that modified diets (phytase additions,
low-phytate grains and lower phosphorus) are
widely implemented, there is a need for long-term
studies to determine the environmental effects of
manure application resulting from these diets and
the effects on soil phosphonis forms. There are no
long-term trials studying the effect of land-applied
manures from low-phytate diets on soil organic
matter, soil phosphorus availability and forms, or
phosphorus losses in runoff Given the importance
of understanding the impact of intensive animal
operations on the phosphorus pollution of water
bodies, such studies are urgently required.
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