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Irrigation is practiced on about 17 percent of
the world's arable land. Irrigated land accounts
for 33 percent of the world's food production
(FAO, 1988) and contributes greatly to the econ-
omy in many agricultural regions. In developing
countries, nearly 60 percent of rice and wheat
production used for food is grown on irrigated
cropland. The United Nation's Food and Agri-
culture Organization (1988) estimates that about
two-thirds of the increase in arable land needed
to produce food crops by 2050 will be irrigated.
Along with the significant economic impact of
irrigated agriculture, however, come significant
environmental and natural resource impacts.

U.S. Department of Agriculture (USDA)
conservation programs commonly are used to
improve irrigation systems and their management
in an attempt to reduce the impacts of irrigation
on the environment and natural resources.

Irrigation water management practices

Water management practices applied to irrigated
cropland often are placed into one of three catego-
ries: ( I ) water storage. pumping, regulating, and
conveyance systems for irrigation water supplies:
(2) irrigation water application or distribution
systems; and (3) irrigation water management.

The goals of adopting more efficient irrigation
systems or better management of irrigation sys-
tems generally are to reduce evaporation, reduce
overland runoff of water and contaminants, and
reduce deep percolation of water and contami-
nants. These reductions will lead to lower water
withdrawals from streams, reservoirs, and ground
water and improved water quality. If water is
pumped for delivery and/or distribution, there is a
concomitant reduction in energy use as well.

Efficiency and conservation

Before discussing the environmental impacts
of improved irrigation, it is important to under-
stand two commonly used terms: "efficiency" and
"conservation.- The terms "irrigation efficiency,"
"water application efficiency," and "water con-
servation" frequently are used in the context of
water savings. While it is possible to have a direct
relationship between efficiency and conservation
(water savings), this linkage depends upon how
the savings are accomplished, and one should not
assume that higher efficiency always results in
water savings (CAST, 1988).

The term "conservation" is used in various
contexts. In one context, "hydrological conserva-
tion" implies that water is "saved" for subsequent
or downstream use. In an agricultural production
setting, however, the word "conservation" more

likely means that water is saved or captured for
enhanced crop production through reduced plant
water stress. Water saved through hydrologi-
cal conservation can be used downstream for all
types of uses, including those relating to ecologi-
cal integrity, such as in-stream flow needs and
the needs of riparian zone vegetation. Of course,
other downstream uses will include municipal,
industrial, and domestic uses, as well as irriga-
tion, to name a few. This chapter strives to distin-
guish between hydrologic conservation and crop
production conservation (behavioral or economic
conservation).

Irrigation efficiency is the ratio of water benefi-
cially used to the water delivered or applied (Burt
et al.. 1997). Application efficiency differs slightly
from irrigation efficiency because application
efficiency is the water stored in the crop root zone
during application divided by the water delivered
or applied (Burt et al., 1997). The difference
between the water delivered or applied and water
beneficially used or stored is a result of water
"losses" that occur during application, namely
evaporation, drift, runoff, and deep percolation.

In addition to "losses" that occur during water
application, losses also can occur during convey-
ance from the water source to the field where it
is applied. These conveyance losses usually are
confined to seepage and evaporation from open
channels. Note, though, that for both application
and conveyance "losses," only evaporation results
in a loss of "wet" water, that is, a change of phase
from liquid to vapor. Runoff, drift, and deep
percolating water remains in the liquid state and,
hence, available for downstream uses (CAST,
1988) so long as the water's quality continues to
meet downstream needs.

Hydrological conservation will result from
practices that reduce runoff and deep percolation
(return flows) when the runoff and deep percolat-
ing waters flow to saline sinks, or when they are
used for non-beneficial evapotranspiration, or
when water quality is degraded to the point that it
is unusable (CAST. 1988). Thus, while improved
irrigation practices may increase water use ef-
ficiency, those practices do not always result in
hydrological water conservation. Upstream water
"losses" often are a water source for downstream
uses. But water quality degradation often or
almost always diminishes as a result of better
irrigation practice.

On the other hand, if the term "water conserva-
tion" is defined behaviorally or economically,
then improved irrigation practices almost always
conserve water (CAST, 1988). Howell (2001)
presented several definitions of "water use effi-
ciency," all of which relate to the amount of crop
yield relative to the water applied or transpired.
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In this context, water is conserved when water
use efficiency increases as a result of better ir-
rigation practice. Improved water use efficiency,
however, does not necessarily lead to conserva-
tion in a hydrologic sense.

The following discussion of documented effects
accounts for the definitions of "efficiency" and
also the connections between efficiency and water
quality. There appears to be no obvious link be-
tween use of water-management-oriented conser-
vation practices on irrigated cropland and air qual-
ity, with the exception of the benefits that might
follow from reduced emissions associated with
power units that are sometimes necessary to pump
water. The documented impacts are discussed in
the following order: (1) irrigation water delivery
systems; (2) field water application or distribution
systems; (3) irrigation water management; and
(4) environmental and water quality effects. The
linkage between improved irrigation practices
and water quality invariably is associated with the
reduction of contaminant transport when overland
runoff and/or deep percolation are reduced.

Irrigation water delivery systems

Water must be delivered efficiently to irrigation
systems to avoid excess diversions from surface
and ground water supplies and to minimize ener-
gy for delivery. Also, using reservoirs to regulate
water flow allows for more efficient irrigation,
especially with labor-intensive systems, because
irrigation can then occur at times favorable to the
irrigator, for example, during daylight hours.

Reservoirs and irrigation pumps

Table 1 summarizes the practices that pertain to

reservoirs. The benefits of storage reservoirs to
economic water conservation are obvious. If water
is diverted from a stream for storage and later
use, there often is an economic benefit. Regulat-
ing reservoirs are intended to make irrigation
management more flexible and efficient. This is
particularly true for irrigation systems that require
a significant amount of labor to operate efficiently,
such as certain applications of surface irrigation
and hand-moved sprinkler irrigation. For example.
surface irrigation efficiencies may be as low as
20 percent (Keller, 1965) with poor management.
But with proper labor and management inputs,
this efficiency can be increased to as much as 70
percent. Usually, labor is more readily available
during daylight hours, so regulating reservoirs can
be used to store water for the entire day but only
used for water delivery during the daylight hours.
Reservoirs, then, must have enough volume to
store water for 12 to 16 hours.

Losses of water from reservoirs to evaporation
can exceed 1.800 mm (70 inches) per year in the
southern High Plains of the United States and
2,500 mm (100 inches) per year in the Desert
Southwest of the United States (Farnsworth et
al., 1982). Reservoirs also experience losses to
seepage. either through earthen embankments or
directly from the reservoir bottom. Litchtier et al.
(1980) measured seepage losses that ranged from
2.5 mm (0.10 inch) to more than 480 mm (19
inches) per day from irrigation runoff recovery
reservoirs, with an average loss of about 15 mm
(0.5 inch) per day. While an economically ef-
fective method of evaporation control has not yet
been developed, seepage reduction through soil-
treatment liners and membrane liners can effec-
tively reduce seepage losses, especially in smaller
reservoirs.
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Code and title
436
Irrigation storage reservoir

552

Irrigation regulating res-

ervoir

521
Pond sealing or lining

533
Pumping plant

Definition and purpose
Definition: An irrigation water storage structure made by constructing a dam, embankment, or pit.
Purpose: Conserve water by holding it in storage until it is used to meet crop irrigation requirements

Definition: A small storage reservoir constructed to regulate an irrigation water supply.
Purpose: Collect and store water for a relatively short period of time to:
• Improve irrigation water management by regulating fluctuating flows in streams, canals, or from
pumping plants.
nProvide storage for tailwater recovery and reuse.
nImprove offsite water quality.

Definition: A liner for a pond or waste impoundment.
Purpose: To reduce seepage losses from ponds or waste impoundments for water conservation
and environmental protection.
There are individual standards for each type of liner or sealing procedure: flexible membrane, 521A;
soil dispersant treatment, 5218; bentonite treatment, 521C; and compacted clay treatment, 5210.

Definition: A pumping facility installed to transfer water for a conservation need.
Purpose: Provide a dependable water source or disposal facility for water management.



Irrigation pumping plants often are necessary to
extract water from wells and surface sources as
well as pressurize the water for distribution. As
shown by Gilley et al. (1990), energy for irrigation
can account for 40 to 60 percent of the total energy
used in production agriculture. To minimize en-
ergy needs at these pumping plants, it is essential
that they be designed and maintained properly.
Research shows that, on average, the performance
of irrigation pumping plants is less than technically
achievable by about 20 to 30 percent (Schroeder
and Fischbach, 1983; Miles and Longenbaugh,
1968). In-field adjustments of pumps and engines
can save 10 percent or more in energy.

Open-channel conveyance

Table 2 summarizes the practices that pertain
to open-channel conveyance. Irrigation canals
and field ditches are one means of delivering
water from a source to the point of delivery on
the farm. Earthen-lined ditches can have sig-
nificant seepage losses, in the range of 15 to 45
percent, according to van der Leen et al. (1990).
Kraatz (1977) showed that on 46 U.S. Bureau of
Reclamation projects seepage losses ranged from
3 to 86 percent, with an average of 40 percent.
According to the U.S. Department of the Interior
(USD1 et al., 1979), losses during conveyance in
the United States average 22 percent. Lining can
reduce those "losses" significantly, if not entirely.

Typical lining materials include concrete and
flexible synthetic membranes. Kraatz (1977) il-
lustrated that flexible plastic lining reduced seep-
age losses 95 percent. But, like the arguments

presented above, lining usually does not save
"we(' water because seepage water is potentially
available for use downstream. But the amount
of diversion can be reduced even if downstream
effects are minimal.

Pipelines

Table 3 summarizes the practices pertaining
to irrigation pipelines. Conversion from open
channels to pressurized pipelines can essentially
eliminate the "losses- of water via evaporation
and seepage. As shown in table 3, there are many
material options available for these pipelines.

In addition to the use of pipelines for convey-
ance, they also are used as laterals for water
distribution within a field. Included are sprinkler
laterals, micro-irrigation laterals, and gated pipe-
lines. For surface irrigation, there are basically two
means for delivering water at the head or inlet end
to a field: open channels with spites or siphons
and gated pipelines. Gated pipelines can reduce
seepage and evaporation losses over losses in open
channels (assuming earthen-lined channels) by
about 10 percent (Yonts and Klocke, 1997).

Field water application
and distribution systems

Surface and subsurface systems
and tailwater management

Table 4 summarizes the practices that pertain
to surface and subsurface systems and tailwater
management. Surface irrigation refers to systems
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Table 2. National conservation practice standards pertaining to open channel water conveyance for irrigation (from

428
Irrigation water conveyance, ditch and canal lining

I.J,:finition and purpose

Definition: A permanent channel constructed to convey irrigation water
from the source of supply to one or more irrigated areas.
Purpose: To convey irrigation water to one or more irrigated areas.

Definition: A permanent irrigation ditch constructed in or with earth ma-
terials, to convey water from the source of supply to a field or fields in an
irrigation system.
Purpose: This practice may be applied as part of an irrigation water man-
agement system to efficiently convey and distribute irrigation waters.

Definition: A fixed lining of impervious material installed in an existing or
newly constructed irrigation field ditch or irrigation canal or lateral.
Purpose:
• Improve control and management of irrigation water
• Prevent water logging of land
• Maintain water quality
• Prevent erosion
• Reduce seepage losses.
There are individual standards for each type of fixed liner: plain concrete,
428A; flexible membrane, 428B; and galvanized steel, 428C.

anu

320
irrigation canal or lateral

388
Irrigation field ditch
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that rely on overland flow to distribute the water
within a field. Examples include basin, furrow,
and border irrigation systems. Surface irrigation
is practiced on more than 50 percent of the ir-
rigated land in the United States (Howell. 2001),
but this percentage is declining. Surface irriga-
tion is practiced on about 90 percent (Kay, 1986)
of the irrigated land throughout the world. It is
common worldwide because of the lower capital
requirements needed for this method compared
to the more capital-intensive, pressured systems.
In general, surface irrigation methods are less
efficient than sprinkler systems and micro-irriga-
tion; typical application efficiencies can be as
low as 40 to 50 percent for unimproved systems.
Because management of these systems is labor-

intensive, their efficiency is inherently lower than
for pressurized systems.

Many technologies exist to improve surface
irrigation (Musick and Walker, 1987), includ-
ing controlled land grading (Clemmens, 2000;
Agarwal and Goel, 1981), recovery of runoff or
tailwater (Eisenhauer and Fekersillasae, 2000),
and surge flow (Stringham and Keller, 1979;
Eisenhauer and Fekersillasae, 2000). Application
efficiencies as high as 90 percent were reported
for laser graded level basins (Clemmens, 2000)
and nearly 80 percent for sur ge irrigation systems
with runoff recovery (Eisenhauer and Fekersil-
lasae, 2000). Because water applied or withdrawn
is inversely proportional to application efficiency,
improved irrigation practice can reduce water ap-

• National conservation pra 7 standards pertaining to irrigation water conveyan .` g pipelines (from wmi

Code and title
430
Irrigation pipeline used for
conveyance

430HH
Rigid gated pipeline used
for conveyance and distri-
bution

Definition and purpose
Definition: A pipeline and appurtenances installed in an irrigation system.
Purpose: To prevent soil erosion or loss of water quality or damage to the land, to make possible
proper management of irrigation water, and to reduce water conveyance losses.
There are individual standards for each pipeline material or type: aluminum tubing, 430AA; asbes-
tos-cement, 430E4B; non-reinforced concrete, 43000; high pressure underground plastic, 430DD;
low-pressure underground plastic, 430EE; steel, 430FF; and reinforced plastic mortar, 430GG.

Definition: A rigid pipeline, with closely spaced gates, installed as part of a surface irrigation
system.
Purpose: To efficiently convey and distribute water to the land surface for better water manage-
ment, without causing excessive erosion, water losses, or reduction in water.

Table 4. National conservation practice — •	 p
nrcs.usda.govitechrikal/Stan4rds/n

rface and subsurface irrigation systems (from www.

IIMWd title
464
Irrigation land leveling

443
Irrigation system, surface
and subsurface

447
Irrigation system, tailwa-
ter recovery

450

Anionic polyacrylamide
(PAM) erosion control

Definition and purpose
Definition: Reshaping the surface of land to be irrigated to planned grades.
Purpose: To permit uniform and efficient application of irrigation water to the leveled land.

Definition: A system in which all necessary water-control structures have been installed for the ef-
ficient distribution of water by surface means, such as furrows, borders, contour levees, or contour
ditches, or by subsurface means.
Purpose: This practice is applied as part of a conservation management system to achieve one or
more of the following:
• Efficiently convey and distribute irrigation water to the surface point of application without causing
excessive water loss, erosion, or water quality impairment.
• Efficiently convey and distribute irrigation water to the subsurface point of application without
causing excessive water loss or water quality impairment.
• Apply chemicals and/or nutrients as part of an irrigation system.

Definition: A planned irrigation system in which all facilities utilized for the collection, storage, and
transportation of irrigation tailwater for reuse have been installed.
Purpose: This practice may be applied as part of a conservation management system to support
one or more of the following:
• Conserve irrigation water supplies
• Improve offsite water quality

Definition: Erosion control through application of water-soluble anionic polyacrylamide (PAM)

Purpose: This practice is applied as part of a conservation management system to minimize or
control irrigation-induced soil erosion.



plications 60 percent or more (see, for example,
Spalding et al., 2001).

With surface irrigation, water "losses" are domi-
nated by runoff and deep percolation. As a result,
the improved practices do not necessarily result
in water being conserved for other uses because
the runoff and deep percolation are available for
downstream or subsequent use. As discussed ear-
lier, when runoff and deep-percolating water flow
to saline sinks, or when they are used for non-ben-
eficial evapotranspiration, or when water quality
is degraded to the point that water is unusable
(CAST, 1988), downstream uses are no longer
plausible and improved irrigation methods can
result in more water available for other uses.

Tailwater management or reuse of runoff can
significantly affect losses. Tailwater usually ac-
counts for 10 to 30 percent of the water applied.
and it is not uncommon for runoff recovery sys-
tems to increase efficiency by about 15 percent.
For example, Bolen et al. (1989) indicated that in
the 1960s about 20 percent of the pumped irriga-
tion water flowed into playa lakes in the southern
High Plains. Musick and Walker (1987) showed
irrigation runoff losses from farmers' fields to
range from 16 to 35 percent of the water applied
in the High Plains of Texas. Nearly all this runoff
water could be captured and returned for use
with a properly designed and maintained runoff
recovery system.

Another method of reducing water applications
in surface irrigation is through surge irrigation
(Stringham and Keller, 1979; Bishop et al., 1981;
Yonts et al.. 1996; Eisenhauer and Fekersillasae,
2000). The intermittent water application of

surging sometimes reduces water infiltration at
the upper end of the field, which allows for more
uniform water distribution, The efficiencies of
surge irrigation can be as high as 90 percent and
reduce field-scale water applications 60 percent
(Spaldin g. et al., 2001).

In addition to the low water application ef-
ficiencies sometimes associated with surface irri-
gation, soil erosion can be a serious problem with
surface irrigation (Trout et al., 1990), especially
furrow irrigation (Kemper et al., 1985). Manag-
ing the stream to minimize erosion losses largely
controls soil erosion in surface irrigation.

Pressurized irrigation systems

Table 5 summarizes the practices that pertain
to pressurized irrigation systems. The greatest
change in irrigation application systems in the
United States during the 15-year period from
1979 to 1994 involved center-pivot irrigation
systems (Howell. 2001). Center-pivot systems
require significantly less labor and apply water
more efficiently than surface irrigation sys-
tems. Water is applied through sprinklers, spray
devises, or LEPA. The term LEPA is an acronym
for low energy precision application (Lyle and
Bordovsky. 1981). With LEPA, water is applied
near the soil surface, where it is not as vulner-
able to evaporation and drift. Schneider (2000)
reviewed the literature on application efficiencies
for center-pivot systems with spray and LEPA ap-
plication devices and found average efficiencies
of 85 to 95 percent for spray devices, with some
as low as 40 percent. He also found that LEPA

Table 5. National conservation practice standards pe 	 g to pressurized irrigation systems (from www.nrcs.usda.
' -	 -

and Me
	

Definition and purpose

442
	

Definition: An irrigation system in which all necessary equipment and facilities are installed
Irrigation system, sprinkler

	
for efficiently applying water by means of nozzles operated under pressure.
Purpose: This practice may be applied as part of a conservation management system to
achieve one or more of the following:
• Efficiently and uniformly apply irrigation water to maintain adequate soil water for the
desired level of plant growth and production without causing excessive water loss, erosion,
or water quality impairment.
n Climate control and/or modification.
nApplying chemicals, nutrients, and/or waste water.
nLeaching for control or reclamation of saline or sodic soils.
nReduction in particulate matter emissions to improve air quality.

441	 Definition: An irrigation system for distribution of water directly to the plant root zone by
Irrigation system, micro-irrigation 	 means of surface or subsurface applicators.

Purpose: This practice may be applied as part of a conservation management system to
support one or more of the following purposes.
n To efficiently and uniformly apply irrigation water and maintain soil moisture for optimum
plant growth.
• To apply chemicals.
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systems have average application efficiencies of
80 to 100 percent, with typical values in the range
of 95 to 98 percent. Spalding et al. (2001) found
that center-pivot irrigation water applications
were more than 70 percent lower than conven-
tional furrow irrigation. Reduced deep percola-
tion can be a key advantage of sprinkler irrigation
over surface irrigation. Evaporation losses usually
are considered to be higher with sprinkler irriga-
tion, but they typically will be less than common-
ly perceived. Evaporation losses from sprinkler
systems usually are less than 5 percent, but they
can be as high as 10 percent (Schneider, 2000).
Center-pivot and lateral-move sprinklers probably
have efficiencies in the range of 80 to 90 percent
(Gilley et al., 1990).

Micro-irrigation

Camp (1998) and Ayars et al. (1999) provided
excellent reviews of the state-of-the art and re-
search findings on subsurface drip irrigation and
micro-irrigation in general. With subsurface drip
irrigation. water is applied below the soil surface,
typically 30 to 45 cm (12 to 18 inches) below the
surface. With relatively uniform application and
negligible or zero evaporation losses, the typical
efficiencies of these systems reportedly exceed
90 percent. A potential added advantage of these
systems is that the soil surface is not wetted dur-
ing water application, leading to less soil water
evaporation. This can be an important factor,
particularly in arid areas where the surface is not
wetted frequently by rainfall.

As reported by Gilley et al. (1990), the efficien-
cy of micro-irrigation systems can range from
70 to 93 percent. Because runoff and evapora-
tion usually are not a significant part of water
losses, the lower end of these efficiency ranges
is probably due to poor water distribution. Ayars
et al. (1999) reported that uniformity coefficients
often exceeded 90 percent for subsurface drip
irrigation. Ayars et al. (1999) also stated that the

use of high-frequency irrigation resulted in less
deep percolation and increased use of water from
shallow ground water (via upward flow from the
water table) when crops were grown in areas with
high water tables. Evett et al. (1995) found that
subsurface drip irrigation saved about 10 percent
of seasonal precipitation plus irrigation compared
to surface-applied drip irrigation.

Irrigation water management

Table 6 summarizes irrigation water manage-
ment practices. Irrigation scheduling is a water
management practice designed to apply water
according to crop and soil evapotranspiration. It
can reduce water withdrawals and losses. Fergu-
son et al. (1990) illustrated reductions in water
applications averaging 12 percent due to irriga-
tion scheduling: the proper timing and amount
of irrigation. Work by Duke at al. (1978) showed
reductions in water applications of 5 to 20 per-
cent on farmers' fields through implementation of
irrigation scheduling.

Chemigation, which is the practice of apply-
ing chemicals with irrigation systems, has the
potential for reducing water quality impairments
through better timing of water applications and
more precise water applications (Threadgill et al..
1990). There are risks associated with chemiga-
tion that must be overcome, as explained by Wei-
hing and Eisenhauer (1991). The key is to have
in place the proper safety devices to minimize
contamination of water sources through chemi-
gation. The potential for preferential flow of
chemigation-applied chemicals is a concern
raised by some researchers. Jennings (1990)
found that under high-intensity sprinkler applica-
tion of chemigation-applied bromide, bromide
moved more rapidly through a soil with macro-
pores than did a surface-applied chemical. There
was little difference in chemical application
methods with low-intensity sprinkler applica-
tion. Likewise, Felsot et al. (1998) found that

--;ed

percolation
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Code and title

449
Irrigation water management

and purpose

Definition: The process of determining and controlling the volume, frequency and application
rate of irrigation water in a planned, efficient manner.
Purpose: Manage soil moisture to promote desired crop response:
• Optimize use of available water supplies
nMinimize irrigation induced soil erosion
• Decrease non-point source pollution of surface and groundwater resources
• Manage salts in the crop root zone

nManage air, soil, or plant micro-climate
Proper and safe chernigation or fertigation

• Improve air quality by managing soil moisture to reduce particulate matter movement



Drip irrigation is highly ef-
ficient because it delivers

small amounts of water,
here to grape vines, over
a long period of time and

reduces evaporation.

A moisture meter and
electrical resistance

blocks placed in the soil
profile enable producers

to monitor soil
moisture in this New

Mexico vineyard.

insecticides applied via sub-surface drip irriga-
tion leached significantly below the emitters.
But the researchers stated that this was probably
because the irrigation timing did not match the
crop evapotranspiration rate. Jaynes et al. (1992)
also found that with surface irrigation chemiga-
tion can actually increase the risk of leaching of
agricultural chemicals.

Crop residue management offers a lot of poten-
tial to save "wet" water in irrigated agriculture
because 20 to 30 percent of seasonal evapotrans-
piration is due to soil water evaporation, a loss
that has no apparent economic benefit. Crop
residue management could reduce those losses
significantly, but not completely. Boldt et al.
(1999) illustrated that crop residue reduced net
depletion of groundwater 50 to 75 mm a year (2
to 3 inches a year). A comprehensive discussion
of crop residue effects on soil and water quality
can be found in the soil management practices
chapter of this book.

Environmental effects

Irrigated agriculture can potentially impact
environmental quality, particularly water quality.
Those impacts include depletion of streamflow,
mining of ground water, and water quality issues,
such as contamination of ground water, saliniza-
tion of irrigated land and water, and increased
sediment delivery to off-site water bodies. In
nearly all agricultural production systems, drain-
age water is necessary to maintain soil salinity
and aeration at acceptable levels for crop produc-
tion. In addition, many surface irrigation systems
result in direct field runoff. That water can con-
tain eroded sediments and dissolved chemicals or
chemicals associated with the transported sedi-
ment. Many of these processes are the same in
rain-fed systems. It is not the intent here to pro-
vide a comphrensive review of all environmental
or water quality impacts of irrigated agriculture,
but rather present an overview of the effects and
the efforts to minimize the impacts. Environmen-
tal issues associated with stream depletion and
ground-water mining will not be discussed, even
though the effects can be locally significant.

Salinity and specific ion effects

Salinity and sodic soil management as a conser-
vation practice (practice code 610) is discussed
in more detail in the soil management practices
chapter of this publication. Salt-affected soils oc-
cur in more than 100 countries around the world,
with a variety of characteristics. Salinization is

the accumulation of water-soluble salts in the soil
to such a level that it impacts agricultural produc-

tion. The level at which deleterious effects occur
depends upon plant type. soil-water regime, and
climatic condition (Maas, 1986). A requirement
for salinity control in irrigated agriculture is that
leaching and natural or artificial drainage be ad-
equate to ensure the downward net flux of soluble
salts. Methods of water application and soil type
are the primary variables affecting the amount of
water needed to reclaim saline soils. The amount
of water required is referred to as the leaching
fraction. Intermittent water applications generally
are more effective for leaching soluble salts than
ponded water because of water flow path differ-
ences between saturated and unsaturated soil con-
ditions. Leaching fractions can vary between 0.1
and 0.6. For more information, read Regasamy
(2006), Qadir et al. (2000). Rhoades et al. (1997),
Rhoades and Loveday (1990), Rhoades (1974),
and Tanji and Hanson (1990).

van Schilfgaarde (1990) emphasized that salts
must be removed from irrigated soils if irrigation
in the western United States is to be sustain-
able. Salt loads can be reduced 42 to 48 percent
through improved water management. which
includes relatively uniform applications of water
(van Schilfgaarde et al., 1974). But this will
come at a price of reduced water quality, making
water management even more imperative.

Rhodes (1985) indicated that there are limits
to how much water applications can be reduced
without reducing crop yields due to high salinity.
Typically, drainage water from irrigated systems
is discharged to surface or ground water of better
quality, reducing the suitability of that receiving
water for use in proportion to the increase in salt
concentration.

The magnitude of salt losses is illustrated in a
study reported by Carter et al. (1971)  of a surface
irrieated tract in southern Idaho. Those research-
ers reported an average of 2.4 metric tons ha- 1

(about 2,000 pounds per acre) of soluble salt was
lost each year from an 82,000-ha (205,000-acre)
tract having calcareous silt loam soils that had
been irrigated for 65 years. This was with a 50
percent return of input water as subsurface flow,
considerably more than necessary to maintain
a salt balance. Electrical conductivity increased
from 0.46 dS m- 1 in the input water to 1.04 dS m- 1

in the return flow. Similarly, 0.66 to 1.3 metric
tons ha- 1 (590 to 1,200 punds per acre) of salt
reportedly were lost from an irrigated system in
the San Joaquin Valley (Schoups et al., 2005). In
both systems, conditions may be at or approach-
ing quasi-equilibrium, given that 70 metric tons
ha' (31 tons per acre) of soluble salt were lost
from 5 m (16.5 feet) of soil in the first irriga-

tion season after conversion from native, arid
sagebrush land (Carter and Robbins, 1978). The
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leachate water from that soil profile would have
an electrical conductivity of about 32 dS t11-1 ,

more than sufficient to significantly reduce, if not
eliminate, most plant growth (Maas, 1986). Salt
in that soil profile probably accumulated with
previous weathering over time because the study
was in a semiarid environment where annual rain-
fall was less than potential evaportranspiration.

Specific salts or ions contained in drainage wa-
ters can be toxic to some crops or other biological
components and systems off-site. Ions causing
toxicity problems include boron, chloride, so-
dium, and heavy metals. Boron and chloride tol-
erance limits are reported by Maas and Niemann
(1978) and Maas (1986). Sodium toxicity effects
generally are limited to perennial woody spe-
cies. Overhead irrigated crops may suffer foliar
damage from salt burn caused by drying of the
water spray if salt concentrations in the irrigation
water are sufficient. Salinity also affects stand
establishment, especially under surface irrigation,
but usually can he managed with rows and fur-
rows configured to move soluble salts away from
the germinating seedling (Bernstein et al., 1955;
Bernstein and Francois, 1973).

Trace elements, such as selenium, molybde-
num, and arsenic, in drainage water can have
serious impacts. In a large, comprehensive evalu-
ation of water quality as well as biological and
geological effects on 600 irrigation projects in the
western states, 26 projects showed elevated con-
centrations of selenium. More than 40 percent
of the surface water samples exceeded the U.S.
Environmental Protection Agency aquatic-life
chronic criterion for selenium (5 pg L-'). Irriga-
tion-induced selenium contamination has only
been observed in arid and semiarid areas. Those
areas were primarily associated with Upper
Cretaceous, marine sediments (Nolan and Clark,
1997). Elevated levels of boron, arsenic, mer-
cury, and pesticide residues also were found in
some areas (Engberg, 1996; Feltz and Engberg,
1994; Hren and Feltz, 1998; Seiler et al., 2003).

A widely publicized incident at the Kesterson
Reservoir in California occurred when elevated
selenium concentrations were found in fish and
waterfowl in wetlands receiving subsurface
drainage from irrigated saline land (Benson et al.,
1990; Moore, 1987). That land (Westlands Water
District) prior to irrigation contained naturally high
concentrations of selenium and other elements.
No exact counts of wildlife "lost" were compiled,
but visual observations suggested high numbers.
Research and other efforts are ongoing to identify
and develop suitable remedial solutions to this
problem (Letey et al., 2002; Gao et al., 2003).

In contrast, forage selenium concentrations suf-
ficiently low to cause animal disorders exist adja-

cent to areas having forages with toxic selenium
concentrations (Kubota et al., 1967).

Leaching losses

Nitrate-nitrogen leaching to ground water is
considered the major means of nitrogen loss
in humid regions and in irrigated agricultural
systems. Nitrogen leaching losses from most
dryland grain production systems typically range
from 10 to 30 percent of the total nitrogen inputs,
but those losses can be as high as 60 percent of
the applied nitrogen (Meisinger and Delgado,
2002). In one irrigated vegetable system in the
north central United States, 61 percent of the total
available nitrogen and 77 percent of the applied
nitrogen fertilizer was leached from a sandy soil
to ground water over a 4-year period (Kraft and
Stifles, 2003). Major leaching events occur when
soil nitrate-nitrogen concentrations are high and
water is moving through the soil profile from ex-
cess rainfall or irrigation. Leaching also is more
significant during non-cropping periods of the
year (Peralta and Stockle, 2001).

Improving irrigation systems to reduce deep per-
colation will leach fewer soluble ions (e.g., nitrate-
nitrogen) beneath the crop root zone and generally
improve ground water quality (Linderman et al.,
1976; Smika et al., 1977; Duke et al., 1978; Ritter
and Manger, 1985; Spalding et al., 2001). For ex-
ample, Smika et al. (1977) and Duke et al. (1978)
showed that leaching of nitrate-nitrogen exceeded
10 kg ha' pounds per acre) for each centimeter
(0.4 inch) of deep-percolating water. Linderman et
al. (1976) reported similar trends, but leachate con-
centrations were about four times lower.

Changing irrigation systems also can increase
nitrogen fertilizer use efficiency. In citrus,
compared with flood irrigation, drip irrigation
combined with splitting the applied nitrogen in-
creased nitrogen use efficiency nearly 10 percent
while reducing water applications 15 percent,
without impairing fruit yield or quality (Quinones
et al., 2005). Scheduling nitrogen fertilizer ap-
plications according to crop growth rate increased
use efficiency from 60 percent to more than 75
percent in a sprinkler irrigated potato system
(Westermann et al., 1987). There also are some
indications that nitrogen use efficiencies will
be increased by management of soil variability
within a field (Power et al., 2001; Khosia et al.,
2002; Link et al., 2006).

A primary water management tool to reduce
nitrate-nitrogen leaching is irrigation scheduling
(Meisinger and Delgado, 2002). Water savings
due to scheduling may not be "wet" water, but
those savings definitely have potential for reduc-
ing leaching and return-flow losses of agricultural
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chemicals and salts to receiving ground water and
surface water (Spalding et al., 2001; van Schilf-
gaarde et al.. 1974; van Schilfgaarde, 1990: Hoff-
man et ai.. 1984). 	 Spalding et al. (2001) illustrat-
ed that a combination of sprinkler irrigation and
nitrogen fertigation reduced nitrogen leaching,
with only minor reductions (6 percent) in crop
yields. With the surface irrigation systems in their
study, the nitrate-nitrogen concentration near the
surface of a shallow ground water system was
around 30 mg	 while the concentration was
around 13 mg L-' for much of the study under the
center pivot sprinkler system. Smika et al. (1977)
found that average losses of nitrate-nitrogen to
deep percolation were 19, 30, and 60 kg ha'' year'
(17, 27, and 53 pounds per acre per year) when
deep percolation was 1.6. 2.9, and 7.3 cm year'
(0.63. 1.1, and 2.9 inches per year), respectively.
Watts and Martin (1981) also demonstrated that
the mass of nitrate-nitrogen movement below the
crop root zone was dependent upon the amount
of water flow. Even when there is 11 to 21
percent deficit irrigation, there can be appreciable
amounts of nitrate-nitrogen leached if nitrogen
is over-applied according to established soil and
crop guidelines (Tarkalson et al., 2006). All of
these studies illustrate the importance of man-
aging both water and nitrogen applications to
improve groundwater quality.

Another management tool that may help deter
nitrate-nitrogen leaching is the nitrate leaching
index (Shaffer and Delgado, 2002). This index is
based on hydrologic soil properties and cli-
mate. management practices, crop rotations, and
considerations of off-site effects. As proposed,
management factors are the dominant variable in
determining the potential for leaching (van Es et
al., 2002). This concept was applied to ir rigated
agriculture at the field scale (Wu et al., 2005),
where soils, irrigation system. and crops were
numerically indexed according to the potential
for leaching losses. This approach is similar to
that used by the NLEAP (nitrogen leaching and
economic assessment package) model (Shaffer et
al„ 1991), except NLEAP is not a simple screen-
ing or assessment tool easily used by field staff,
consultants, and farmers. The nitrogen leaching
index should be applicable in many irrigated areas
when fully implemented in the same way as the
phosphorus index (Lemunyon and Gilbert, 1993).

Irrigation-induced soil erosion

Soil erosion affects 21 percent of the 15 million
hectares (37,500,000 million acres) of irrigated
land in the United States (Koluvec et al., 1993).
Soil erosion as well as low water application ef-
ficiencies can be a serious problem with surface

irrigation (Trout et al., 1990), especially furrow
irri gation (Kemper et al.. 1985). High rates of
soil erosion from surface-irrigated systems were
measured in Washington. Idaho, Wyoming, and
Utah. Sediment losses as great as 145 Mg ha-' (65
tons per acre) in 1 hour (Israelson et al., 1946)
and 40 Mg ha' (18 tons per acre) in 30 minutes
(Mech. 1949) were reported in two early studies.
Eighty years of irrigation-induced soil erosion
in southern Idaho reduced crop yield potential
between 20 and 50 percent (Carter et al., 1985).
In 75 percent of the fields in that study, the highly
calcareous subsoil was exposed on the upper or
head-end of the field, often comprising more than
25 percent of the field area.

Factors affecting furrow erosion include fur-
row slope, stream size, crop residue left on the
soil surface or in the furrow, surface roughness.
tillage. and cropping sequence (Carter, 1990).
In many western irrigated areas, extensive land
leveling is performed to help distribute water
while simultaneously reducing slope. The Natural
Resources Conservation Service conservation
practice, irrigation land leveling (practice code
464, Table 4), outlines this process. Erosion rates
are 6 to 20 times greater in the upper quarter of
the field, compared with average rates from the
field overall, even when field slopes are uniform
(Trout. 1996). Furrow slope also affects the
points where detachment, transport, and deposi-
tion occur along the furrow length (Trout, 1996).

A related condition that can cause severe soil
erosion during surface irrigation is the change in
slope between the end of the field and the tailwa-
ter ditch. A majority of soil loss from a field can
be from this area if the area is convex rather than
concave (Carter and Berg, 1983). Field sediment
retention basins (Brown et al., 1981), buried pipe
systems (Carter and Berg, 1983), and vegetative
filter strips (Berg and Carter, 1980) have been
proposed to reduce or control irrigation-induced
sediment losses at the field end. Adding straw to
the bottom of the irrigation furrow also effec-
tively reduces soil erosion (Brown and Kemper,
1987).

Managing stream size to minimize soil erosion
losses is an important factor in surface irrigation.
The normal practice is to apply a stream large
enough to assure that the water reaches the lower
end of the field within 25 to 50 percent of the
irrigation time. This allows sufficient time for
infiltration to provide relatively uniform amounts
of water to the crop. Lower soil erosion rates in
a field can be achieved if the flow rate is reduced
once water reaches the end of the field because
erosion is about a 1.5-power function of stream

size (Kemper et al., 1985). Modifications of this
technique include surge irrigation (Evans et al.,
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1995; Miller et al., 1987) and automated cutback
systems (Humpherys, 1971; Kemper et al., 1987).

Sediment basins and ponds may be used to
remove sediment being transported by irrigation
streams (similar to conservation practice code
350, sediment basin). These can be field, farm, or
watershed sized. Generally, if properly designed,
they can remove 60 to 95 percent of the sediment
in the drainage waters as well as 25 to 33 percent
of the total phosphorus (Brown et al., 1981; Rob-
bins and Carter, 1975). Clay-sized , suspended
particles are not usually trapped without floccula-
tion aids. One limitation to these systems is the
requirement for frequent cleaning if efficiency is
to be maintained, especially if inflow sediment
loads are high. Sediment loads to streams and
rivers may not be equivalent to field soil erosion
losses because irrigation canals and other internal
water transport systems often unintentionally
serve as sediment traps (Depeweg and Mendez,
2002). Cleaning these systems substantially adds
to a distribution system's operational cost.

A relatively new technology developed to
reduce irrigation-induced soil erosion losses
involves injection of a soil stabilizer, such as
polyacrylamide (PAM), into the irrigation water
before application. Lentz and Sojka (1994)
demonstrated that mixing PAM into irrigation
water at a rate of 0.7 kg ha' (0.62 pound per
acre) reduced sediment losses from irrigation
furrows by 94 percent. An alternatively effective
dry or patch method was later developed (Lentz
and Sojka, 1996). Use of PAM in furrow-irri-
gated fields also reduces transport of phosphorus
(Lentz et al., 1998), microorganisms (Sojka and
Entry, 2000), weed seeds (Sojka et ai., 2003). and
pesticides (Singh et al., 1996) off a field. Accord-
ing to Sojka et al. (2000), more than 400,000 ha
(100,000 acres) were treated with PAM in the
United States in 1999. More information on this
conservation practice, anionic polyacrylamide,
PAM (practice code 450), can be found in the soil
management practices chapter of this book.

In addition to sediment losses, there is increas-
ing concern that phosphorus losses from agri-
cultural land cause accelerated algae and aquatic
plant growth in lakes, rivers, and streams (Sharp-
ley et al., 1999). Total phosphorus losses from ag-
ricultural fields generally are not large: however,
phosphorus concentrations that cause eutrophi-
cation can be as low as 0.02 mg L-' (USEPA,
1996). Sediment eroded from irrigated agricul-
tural soils contains 900 to 1,200 mg ke(1.8 to
2.4 pounds per ton) of total phosphorus (Carter
et al., 1974). Typically, the eroded sediment also
contains more smaller sized soil particles than
in the non-eroded soil, causing nutrient enrich-
ment of the runoff In a furrow irrigation study,

flow-weighed dissolved reactive phosphorus
concentrations were found to increase linearly
as soil test phosphorus concentrations increased
(Westermann et al., 2001). The lowest avail-
able soil phosphorus concentration in that study,
10 mg kg-', had a runoff soluble phosphorus
concentration of about 0.01 mg L-' and a total
phosphorus concentration of more than 1 mg
Total phosphorus concentrations were related to
sediment concentrations.

In a similar study, except under sprinkler irriga-
tion, Turner et al. (2004) found evidence of a cur-
vilinear relationship between dissolved reactive
phosphorus and soil test phosphorus. Again total
phosphorus concentrations were one to two orders
of magnitude larger than soluble phosphorus.
Losses of other nutrients primarily are associated
with sediment losses (Bjorneberg et al., 2002). As
these studies and others show, soil erosion control
is necessary to reduce the loss of phosphorus and
other nutrients from irrigated agriculture.

Soil quality effects

Soil quality effects related to soil physical and
chemical changes brought about by irrigation
specifically are difficult to document. In general,
the chemical properties of soils tend toward the
chemical properties of irrigation water applied to
those soils. If the irrigation water contains salts or
sodium, the soils over time will contain those salts
or become sodic. Recent examples include irriga-
tion using wastewater from industrial operations
and domestic use (Singh et al.. 2003; Qian and
Mecham, 2005), dairy factory effluent (Degens et
al., 2000), and sewage effluent (Rattan et al.. 2005).

A more detailed study by Presley et al. (2004)
reported that the pH in an irrigated surface soil
was higher than in a non-irrigated soil, as was the
exchangeable sodium. In that study, irrigation did
not affect the organic carbon or calcium carbon-
ate equivalent of the soil. The data also indicated
that irrigation had modified the natural genetic
processes by increasing the rate of pedogenic ac-
tivity relative to natural conditions. The research-
ers suggested that the ir r igation water chemistry
was a likely explanation for the lack of calcium
carbonate change.

Among various agricultural land use practices,
changing from dry-land to irrigated agriculture has
the potential to increase soil carbon sequestration.
Water applications increase biomass productiv-
ity and soil carbon inputs through residues and
roots. change mineralization rates, and carbonate
balances (Watson et al., 2000). Entry et al. (2002)
reported that organic soil carbon changes under
northern, semiarid irrigated conditions were de-
pendent upon long-term cropping histories. When
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potential water savings.

• Reduction of soil water evaporation through
more effective use of crop residue and other
mulch materials.

• Reduction of plant transpiration through
limited irrigation management (either deficit
irrigation or a reduction of irrigated area) and
use of alternative crops that require less water.

• There is increasing emphasis to use a more
comprehensive approach to soil, water and
crop management practices to lessen off-site
impacts (Oster and Wichelns, 2003; Qadir and
Oster, 2004). This will be especially important
as non-agricultural competition for limited
water supplies increases. While this approach
should improve agricultural productivity and
sustainability, it must also maximize protection
of water quality and environmental resources.
Present and to-be-developed conservation
practices for water, crop, and soil management
will have major roles in such approaches.
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