
1 7 Root Oxygen Deprivation and the
Reduction of Leaf Stomata) Aperture
and Gas Exchange

Robert E. Sojka
Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service,
U.S. Department of Agriculture

Derrick M. Oosterhuis
Department of Crops, Soils, and Environmental Sciences, University of Arkansas

H. Don Scott
Center for Agribusiness and Environmental Policy, Mount Olive Col lege

CONTENTS

Introduction 	
Flooding and Hypoxia Effects on Soil Processes
Soil Hypoxia, the Rhizosphere, and Plant Metabolism
Hypoxia and Stomata] Closure
Stomata Closure Mechanisms 	
Summary

References

1.

IV.
V.

VI.

299
	  300

302
	  302

307
	  308
	  308

I. INTRODUCTION

The most ubiquitous plant abiotic stress in the global
environment is generally thought to be water deficit.
The opposite of water-deficit stress. flooding, initially
involves relief of the abiotic factor of water deficit and
only becomes stressful after flooding persists long
enough to directly or indirectly interfere with a var-
iety of plant functions via several mechanisms. The
relief of stress with short term flooding (typically a
day or less) is the principle upon which irrigation
hinges. By contrast, the negative impacts of pro-
longed flooding on ecosystems, and particularly agri-
cultural production systems, are substantial [I] and
may be as significant as drought, depending on one's
accounting strategy. Much of this impact is the result
of the combination of soil and plant chemical, phys-
ical, and biological changes that cause stomata to
close after prolonged flooding. This contributes sig-
nificantly to a drastic reduction in photosynthesis and
damages many other plant functions by disrupting

transpiration and the complex system of hormonal
control of plant systems and processes.

Figure 17.1 gives a conceptual diagram of the
effects of flooding on the yield potential of a crop
and compares the pattern with what is typically seen
under drought. With drought stress, onset is very
gradual and plant adaptation has ample time to
occur at a pace that moderates the impact of the
water-deficit stress. Drought would have to persist
for weeks in most crops to collapse the yield potential
to near-zero levels. Unless water-deficit stress is ex-
ceedingly severe and has persisted for weeks, the loss
in yield potential is moderate, and relief of the stress
can usually bring about substantial recovery in yield
potential. even full recovery, although yield compon-
ents may shift. By contrast, when flooding occurs,
plants initially see relief of any water deficit stress
they may be experiencing. However, as the oxygen
in the root zone is depleted by plant roots and com-
peting soil organisms (usually in the first 24-48 h), the
initial boost in yield potential rapidly gives way to a
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FIGURE 17.1 Conceptual comparison of stress accumu-
lation and stress relief effect on yield potential for flood-
ing stress vs. drought stress.

precipitous drop. Stress relief upon drainage typically
produces a far more gradual, and usually less success-
ful recovery than with moderate drought, simply be-
cause the plant infrastructure is often far more
devastated by the many system impairments that
can accumulate with flooding. In our chapter, refer-
ence to flooding in the context of this subject matter
refers to prolonged flooding, typically 24-48 h or
longer, which is about the length of time usually
needed for soil organisms to deplete soil water of
dissolved oxygen.

It is interesting and curious that common plant
reactions to root inundation or prolonged flooding
involve several physiological responses much akin to
drought stress. This occurs even thou gh plant roots
are submerged, i.e.. in contact with free water. That
wilting and stomatal closure occuring in flooded
plants indicate that the physiological responses to
flooding are not caused by the energy status of the
water, which is the dominant direct mechanism initi-
ating wilting and stomatal closure during drought.
The physiological responses to soil hypoxia and
flooding have been reviewed by a number of scientists
[I-5].

The wilting, stomatal closure, and various other
physiological responses to flooding have been
explained by several plant response scenarios. These
fall into about five categories: obstruction of xylem
elements by disease organisms, reduced root system
extent or root system/membrane water conductance,
altered soil—plant nutritional status, production or
imbalancing of plant hormones or biochemical sig-
naling compounds, and the action of soil- or plant-
produced toxins [2,6-11].

II. FLOODING AND HYPDXIA EFFECTS ON
SOIL PROCESSES

The way in which flooding or waterlogging proceeds
along a given scenario or set of scenarios is related to
how the physical and chemical properties of water

Days

affect soil mineral and biological processes. Ponnam-
peruma [12] gave an excellent summary of the physi-
cochemical processes that occur in soil upon
prolonged flooding, depleting oxygen as an electron
acceptor. As reactive oxygen disappears, soil redox
potential falls, causing a cascading series of organic
and mineral transformations, resulting in the release
of numerous soluble chemically reduced minerals,
many of which are toxic to plants including methane,
sulfides, and reduced forms of iron and manganese.

Water is essential to most soil biological activities.
As the amount of water in the soil environment shifts
from shortage to plentiful and on to excess, the popu-
lations and functional dominance of competing or-
ganisms also shift. Under excessively wet or flooded
conditions, disease organisms are often favored [8].
Water affects the heat capacity, heat conductivity,
and evaporative properties of soil in a way that gen-
erally tends to cool soil when wet. Water is a potent
solvent, facilitating the mobility of mineral and or-
ganic solutes, to the benefit or detriment of a given
soil biological process, depending on the intensity and
direction of solute movement into or out of an organ-
ism's sphere of influence.

Very important to our discussion is the fact that
water also changes the net oxygen availability of the
soil environment in a temperature-dependent fashion.
While soil aeration can be characterized as the vol-
ume of gas-filled pore space in a given soil volume, or
as the concentration of oxygen (and other gases)
within the pores, most edaphologists agree that soil
oxygen diffusion rate (ODR) is the best indicator of
soil aeration status. This is because ODR gives an
indication of the soil's ability to supply oxygen to
organisms as a rate function [13]. Rhizosphere ODR
is also relatively easy to determine using the platinum
microeIectrode technique [14,15], and leaves both soil
and roots essentially undisturbed. The rate at which
soil can supply oxygen must be balanced against the
rate at which an organism in soil consumes oxygen.
This balance of rates has been the basis of under-
standing and modeling soil-oxygen-mediated pro-
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FIGURE 17.2 Relative temperature-related changes in corn
root respiration rate (assuming respiration rate doubles for
each 10 K increase, i.e., Q 10 2), diffusion coefficient (D)
of 02 in air and in water, and 0? solubility coefficient (OSC)
in water. (From Ref. [9], as adapted from Refs. [17,18].)

cesses [16.17]. Luxrnoore and Stolz)/ [18] gave an
elegant graphic depiction of this dependency (Figure
17.2).

As soil water content increases. the thickness of
water films around soil particles. microorganisms.
and surfaces of plant roots also increases. The thick-
ness of these water films greatly influences the transfer
of oxygen from the soil environment to respiration
sites in roots and microorganisms [8]. Oxygen diffuses
104 times more slowly through water than through air
[19] and only one-fourth as rapidly through dense
protoplasm as through water [20,21]. The physics of
this process are described by Fick's first law:

J = Do dCo/dx

where J is the gas flux per unit cross sectional area of
soil, Co is the concentration of the particular gas in
the gas phase of the medium, and Do is the apparent
diffusion coefficient of the gas in the medium [22,23].

There is a long history and voluminous literature
pointing to the direct and indirect roles of rhizosphere
oxygen status during flooding as key factors in
plant physiological response to flooding. Clements
[24] documented that the negative impacts of water-
logging on plants have been recognized for centuries.
The specific role of soil oxygen for maintaining plant
vigor was noted as early as 1853 [25]. Rhizospere
oxygen status appears to affect plant physiological
responses both	 directly	 (via respiration-mediated
metabolic processes in the root) and indirectly (via

cascading chemical, biochemical, and physical pro-
cesses in the soil, rhizosphere, and the plant).

Our chapter focuses primarily on the role of root
zone hypoxia and anoxia in bringing about stomatal
closure. While flooding or waterlogging is certainly
the most common circumstance limiting root oxygen
availability, it is not the sole scenario. Several other
examples can be noted. Generous incorporation of
fresh organic matter into warm wet soil can stimulate
depletion of soil oxygen through the respiration of
microorganisms decomposing the fresh substrate. Soil
compaction. which reduces average gas-filled soil
pore size and total pore space of soil, creates many
dead-end soil pores, and favors blockage of the smal-
ler soil pores with water films, restricting diffusion of
oxygen through the soil matrix. Oxygen diminishes
with soil depth, and if an established plant's roots are
buried too deeply under additional soil, the root sys-
tem can become oxygen limited.

The dominant literature, of course, relates to
flooding; however, a number of studies have manipu-
lated soil oxygen independently of flooding, providing
important insights to the phenomena [8]. Also, since
oxygen unavailability is probably the dominant direct
trigger for most of the plant responses that ultimately
manifest themselves as familiar visual and otherwise
easily monitored physiological responses. it is logical
to quantitatively tie measurable physiological re-
sponses to rhizosphere ODR values. ODR can be
physically predicted with reasonable reliability for a
range of soil conditions [26-28]. Thus, the correlation
of quantifiable physiological responses to ODR meas-
urements facilitates the normalizing of responses to a
reliable soil indicator, allowing species and cultivar
response comparisons. Ultimately this approach also
enables modeling of physiological responses on a
sound physical basis.

In contrasting the effects of flooding and other
sources of oxygen exclusion, it is important to remem-
ber that flooding causes numerous ancillary changes
in the rhizosphere. These include lowered chemical
redox potential, resultant specific ion effects, leaching
of mobile water-soluble nutrients, metabolic release,
and dispersal from microorganisms of organic com-
pounds affecting higher plant function, displacement
of soil oxygen with carbon dioxide, ethylene, and
other partially water-soluble plant-impacting gases,
and promotion of favorable conditions for patho-
gens. When they occur en suite, these multiple rhizo-
sphere changes confound our ability to understand
stomatal closure, which so strongly impacts gas ex-
change and photosynthesis. Direct manipulation of
soil atmospheres has been used in many experiments
to limit the sources of confounding, and/or reduce
their intensity.
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III. SOIL HYPDXIA, THE RHIZOSPHERE,
AND PLANT METABOLISM

As the rate of oxygen supply dwindles in a soil system,
eventually falling below the demand rate of respiring
organisms, a series of consequences often results. Ini-
tially, root respiration, lacking sufficient free oxygen,
begins to proceed along a fermentative pathway, rap-
idly consuming the available pool of stored carbohyd-
rates in what is often referred to as the Pasteur effect
[29-31]. Under these conditions, oxidative phosphor-
ylation of mitochondria is blocked and the Krebs
cycle is bypassed in meeting the demand for adeno-
sine triphosphate (ATP) [32]. Alcohol, rather than
carbon dioxide, becomes the dominant metabolic
by-product released. The relative amount of energy
released in this manner is only about 5% of that
liberated by substrates utilized via the aerobic respir-
ation pathway [29]. There can be numerous other
alternative pathways, depending on the organism
and properties of the soil system [31]. These include
reduction of inorganic compounds such as sulfur and
production of other by-products, such as methane.
The specific biochemical pathways taken under hyp-
oxic conditions probably varies among higher plant
species and their complexities are not yet fully under-
stood [33-37]. Several authors have suggested that the
alcohol produced under hypoxic conditions does not
injure roots because it easily migrates out of and away
from the root and perhaps the action of acetaldehyde,
rather than alcohol is the injury causing agent in these
scenarios [38].

Boarnfa et al. [39] showed that oxygen released by
photosynthesis in rice (Oryza saliva) was completely
consumed within the plant and that exposure to light
reduced the intensity of the anaerobic metabolic re-
sponses. By contrast Luxmoore et al. [16] showed an
increase in root porosity and hypoxic symptoms in
oxygen-stressed wheat (Triticurn aestivurn) exposed to
increasingly higher light intensities. It was their inter-
pretation that under high light intensity there is a
large supply of carbohydrate to the root_ a high res-
piration rate, and an "induced oxygen scarcity" to
inner root cells resulting in necrosis of some cells and
the development of gas spaces.

Generally, as aerobic respiration becomes
impaired, energy conversion slows and potentially
toxic organic and inorganic wastes begin to accumu-
late in the rhizosphere and in the plant, impairing
various metabolic and membrane functions, particu-
larly in roots. Flooded plants also tend to produce
fewer mycorrhizal filaments affecting nutrient and
water availability as well as extent of contact surface
for diffusion entry of oxygen [40,411. As a result, in
the early stages of root hypoxia, root uptake of nu-

trients from soil slows and plants begin to experience
mobilization and reallocation of existing nutrients
from areas of higher concentration (usually from ac-
tively growing, more juvenile tissue) to areas of lower
concentration [42-44]. Passive transfer of water and
nutrients in the xylem stream is also reduced as sto-
mata close and transpiration decreases.

Reviews of physiological response to flooding or
hypoxia have usually noted that there is not a con-
sistent co-occurrence of plant water potential shift
associated with hypoxia-induced stomatal closure.
Even when changes in water potential accompany
stomatal response, it is often not clear whether sto-
mata are more directly affecting or affected by the
changes in plant water potential. Because of the com-
plicated nature of these environmental alterations and
the equally or greater complexity of species-specific
plant response to each given hypoxia-dominated
scenario, it may well be that different processes dom-
inate under different circumstances.

Eventually with prolonged hypoxia, because en-
ergy conversion has become so inefficient, the sub-
strate requirement of roots can only be met by
metabolizing less resistant cellular constituents in
place. This latter process gradually results in the de-
velopment of lysigenous zones of intercellular voids,
which eventually contribute to improved internal dif-
fusion of oxygen to the roots from the aerial portions
of the plant. This constitutes one of the most import-
ant adaptive mechanisms of flood resistant plants,
allowing survival and eventual return to more normal
plant function [16-18.45-58].

If a plant is less capable of shifting metabolic
pathways, or if hypoxia persists and the entire soil
profile is completely depleted of oxygen, resulting in
hypoxia or anoxia that persists for several days, root
systems become necrotic. Necrotic tissues lose phys-
ical integrity and can provide an easy vector for
pathogen and pest invasion. This process, which is
sometimes referred to as root pruning, also impairs
physiological recovery following improved aeration
of the profile — for example, upon drainage following
flooding. In this case root extent has been abruptly
decreased making plants far more susceptible to sub-
sequent water deficits. The increase in root-to-shoot
ratio impairs soil-nutrient and soil water extraction
and slows the recovering plant's subsequent growth.
In crop plants this usually significantly reduces crop
yield [59-67].

IV. HYPDXIA AND STOMATAL CLOSURE

The effect of flooding on stomatal closure has been
recognized directly or indirectly for at least 60 years,
however, only a few papers have concentrated on soil
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oxygen effects per se. Reduced transpiration and
photosynthesis was seen by Childers and White [68]
within 2 to 7 days of flooding apple trees (Malta
clomestica). They reported slight elevation of transpir-
ation and photosynthesis immediately upon inunda-
tion, likely due to initial relief of mild water-deficit
stress. But, as in many findings to the present day for
many species, after about 48 h leaf expansion ceased
and root necrosis became extensive. While their meas-
urements showed no leaf temperature or stomatal
aperture differences among treatments, this failure
may have been the result of inadequate measurement
technology at the time of their work. Reduced stoma-
tal conductance and photosynthesis in soybean (Gly-
eine max) 2 days after flooding imposition was
reported by Oosterhuis et al. [60,61].

Moldau [69] published the first measurement
of increased leaf diffusive resistance (R L), which is
the inverse of leaf conductance (gs), caused by root
waterloggin g in common bean (Phase°lus vulgaris).
Smucker [70] also reported similar findings for navy
beans. Regehr et al. [71] reported increased R L for
flooded cottonwood (Populus dehoides). Meek et al.
[72] reported that R L was greater for cotton (Gassy-
pium hirstaum) with a continuous 30 cm water table
depth than with a 90 cm depth, and also noted
reduced soil ODR in wetter profiles. These early
measurements of increased R L drew attention to
waterlogging's impairment of normal plant control
of leaf gas exchange and regulation of water and
solute transport. These reports also explained earlier
observations of reduced leaf damage by airborne oxi-
dants when exposure occurred during flooding
[73,74].

Increased R L in wheat (Trilicum aestivwn) was
measured by Sojka et al. [75] when the wheat was
grown at optimal water content but had soil oxygen
excluded by continuous flushing of the soil with
mixtures of air and nitrogen gas (Figure 17.3).
Flushing with ambient air (21 0/n 02 ) had the lowest
RL, flushing with pure N 2 produced the highest
RL, and flushing with a 4% oxygen concentration
only slightly increased R L over the air-flushed treat-
ment. In subsequent publications [9,76-78] curvilin-
ear regression demonstrated that RL could be reliably
related to measurements of soil ODR as measured by
the platinum microelectrode technique [14] for a num-
ber of diverse plant species grown at optimum water
contents in controlled soil oxygen chambers. This
pattern suggested that stomata! response to soil oxy-
gen availability was abrupt at some threshold value of
oxygen availability. The curvilinear regressions of R L
against ODR for numerous species have shown sharp
response thresholds occurring at or near ODR values
of 20 x 10-8 g/cm 2/min. This same ODR value is a
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FIGURE 17.3 Diffusive resistance of wheat flag leaves as
affected by soil oxygen diffusion rate (ODR). (From Sojka
RE. Stolzy LH. Soil Sci. 1980; 130:350-358. With permis-
sion.)

recognized threshold for a variety of plant growth,
physiological and nutritional responses [8,79].

The observations from controlled root atmos-
phere chambers also suggested that stomatal closure
from reduced oxygen in the root zone was largely
independent of increases in rhizosphere carbon diox-
ide or other physiologically active gases such as ethyl-
ene. Even though those gases were not measured in
the studies, they could not have accumulated signifi-
cantly in the soil because of the continuous flushing of
the root chambers with gas mixtures free of the sus-
pect gases. While various power or exponential equa-
tions could provide hi gh correlation of R L to ODR
for a given study, the equation form of the curvilinear
relationships observed in these root-gas studies that
most often worked well across species and studies was
the simple power function:

RL = a(ODR)r'

As Figure 17.4 shows, there was also an interaction of
stomatal response with root temperature. As root
temperature increased, the baseline R L increased.
This would be expected, since as we learned in Figure
17.1 that the respiration requirement increases with
temperature. Thus, the adequacy of oxygen availabil-
ity for roots or root-linked plant functions at any
given soil ODR diminishes as temperature in the
root environment rises, increasing the demand side
of the two rate functions. The expression of this de-
pendency in Figure 17.4 is the increase in R L with root
temperature.
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In the series of investigations conducted by Sojka
and Stolzy, cited above, the value of R 1, regressed
against ODR was the parallel resistance calculated
from the individual adaxial (R d) and abaxial (RID)

leaf measurements, using the relationship

RS  I	 Ra-131 Rad

In a flooding study of tomato (Lvpersicon esculen-
turn), Karlen et aI. [80] showed that, while adaxial
surfaces of control plant leaves had somewhat higher
diffusive resistance values than their abaxial surfaces,
the diffusive resistance response to flooding regimes
of either individual surface or of the calculated
parallel resistance were similar in pattern and magni-
tude (Figure 17.5). One difference was a faster recov-
ery to a normal resistence value for adaxial leaf
surfaces.

Figure 17.6 and Figure 17.7 show the stomatal
response of soybean (Glycine max) to reduction in
root zone oxygen availability [78]. Figure [7.6 shows
a series of vinyl leaf surface impressions associated

FIGURE 17.5 Time-course of flooding effects on tomato
leaf diffusive resistance (Rah abaxial resistance, Rad =

adaxial resistance and R L = calculated parallel resistance).
Flood treatments were well drained (DD), 5-day flooded
(Fl). or 8-day flooded (F2), where flooding began on day
28. Points with differing letters on a given date in a given
Figure differ statistically at P < 0.05. (From Ref. [9] as
adapted from Ref. [80].)

with continuous flushing with varying oxygen mix-
tures through the sealed cylinders in which the
soybean root systems were growing. Figure 17.7
gives the Rc and ODR values generated by the treat-
ment scheme. A key finding of this study was that
the R L increase in the poorly aerated treatments were
not due to changes in the stoma tal number per unit
leaf area. This finding is not entirely consistent
among reports of stomatal closure with flooding
in the literature. The effect of hypoxia on stomatal
distribution and function is likely species dependent
and, perhaps more importantly, dependent upon
the onset history of flooding treatments. Plants that 1
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FIGURE 17.6 Photomicrographs of
vinyl leaf impressions showing: (A)
open, well-aerated (21% 0 2) abaxial
stomata: (B) closed, more densely dis-
tributed abaxial stomata of the poorly
aerated (0% 02 ) treatment: (C) group-
ing of adaxial stomata along leaf
xylem; (D) enlarged impression of an
open (21% 02) stomate and (E) en-
larged impression of a closed (0% 0 2)
stomate. (From Sojka RE. Soil Sci.
1985: 140:333-343. With permission.)

FIGURE 17.7 Parallel leaf diffusive re-
sistance (Rs) as a function of soil oxygen
diffusion rate (ODR) measured on several
observation dates. Each point is the mean
of between 3 and 12 observations. (From
Sojka RE. Soil Sci. 1985; 140:333-343.
With permission.)

are abruptly stressed would have no opportunity to
experience changes in leaf expansion or cell differen-
tiation affecting R L or gs , and any response in these
parameters would have to be physiologically driven
rather than morphologically driven. Gradual or
repeated onset of stress would provide an opportunity
for morphological differentiation. Greater R L or re-
duced g, caused by changes in stomata] distribution
or dimensions would have to result from a drop in
stomatal density or a reduction in stomata! (i.e.,
guard cell) size. These morphological chan ges in re-

sponse to growth-inhibiting stress scenarios have
rarely been reported.

There have been extensive observations of in-
creased leaf diffusive resistance. or decreased leaf
conductance across scores of plant species (Table
17.1). Not all studies specify whether the resistances
reported are abaxial, adaxial, or parallel resistances.
Among the studies where abaxial and adaxial re-
sponses are observed separately, the most common
occurrence is a general similarity of abaxial and
adaxial response. However, some cases of surface-
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TABLE 17.1
Observed Increase of RI_ or Decrease of g, in Response to Root Flooding or Hypoxia

Species Stimulus Refs. Species Stimulus Refs.

Acer rubrum Sail 0 7, + CH4 [129] Phaseolus pulgaris Flood [69.181-183]

Acer rubrum Flood [130] Anoxic win. [127,182-185]

Acer saccharurn Soil 0 2 + CH4 [129] Picea glauca Flood + heat [186]

Actinidia chinensis Flood [132] Picea gauca Flood [165]

Anoxic soln. [132] Picea mariana Flood + heat [186]

Actinidia deliciosa Flood [133,134] Picea mariana Flood [164]

Apios americana Flood [135] Pisurn sat ivunr Flood [103.187-189]

Avicennia germinans Flood [136] Poa pratensis Compaction + [190]

Avicennia marina Flood [137] irrigation

Betula papyrifera Flood [138] Populus balsarnifera Flood [19 l]

Betula nigra Flood [138] Populus canadensis Flood

Betula platyphylla Flood [139,140] Populus deltoides Flood [71,81]

Bruguiera gymnorrhiza Flood	 salt [128] Prioria copaifera Flood [156]

Flood [137,141] P. trichocarpa x deltoides Anoxic soln. [128,192.193]

Citrus aurantium Flood [94,142] Prunus armeniaca Flood [1941

Citrus jarnhhiri Flood [94,142] Prunus cerasus Flood [115]

Citrus sinensis Flood [142] Prunus persica Anoxic solo. [147]

Capiscum annuum Flood [143] Flood [91.175,195]

Carya illinoensis Soil 02 [144] Pyrus beiulaefolia Anoxic soin. [147,196]

Flood [82,145] Flood [91]

Cucurbita peps Flood + salt [ 146] Pyrus calleryarra Anoxic solo. [147,196]

Cydonia oblongs Anoxic soln. [147] Flood [91]

Flood [91] Pyrus commUlliS Anoxic soln. [147,196]

Eucalyptus Flood [81,148] Flood [91,174]

camaldulensis Pyrus pyrifolia Flood [91]

Eucalyptus glabulus Flood [81,148] Pyrus ussuriensis Flood [91]

Eucalyptus ohliqua Flood [148] Quercus alba Flood (149)

Fraxinus pennsylvanica Flood [81,149-152] Quercus falcata Flood [197,198]

Glycine max Flood [60,611 Quercus lyrata Flood [198]

Soil 0 2 [78 1 Quercus macrocarpa Flood [152]

Gmelina arborea Flood [153,154] Quercus nigra Flood [149]

Gossypium barbadense Soil On [76,155] Quercus michauxii Flood [83]

Gossypium hirsutum Flood [72] Quercus Flood [83]

Soil 0 2 [76,155] Quercus rubra Flood [81]

Gustavia superba Flood 11561 Rhi:ophora mangle Flood [136]

Helianthus annuus Anoxic soln. [157] Rlu:ophora inucro tram Flood [137]

Flood [158,159] Salix discolor Anoxic saln. [147]

Anoxic soln. salt [160,161] Flood [91]

Soil 0, A- heat [76.77,162] Salix nigra Flood [81]

Hydrangea macrophylla Flood [163] Simmondsia chinensis Soil 02 + heat [76,77,162]

Larix laricina Flood [164,165] Sorghum bicolor Flood [159]

Liquidambar styraciflua Flood [166] Taxodium distichum Flood + salt [85]

Lycnpersican esculentum Flood [80,102,167-171] Tectona grandis Flood [154]

Mangifera indica Flood [172,173] Theobroma cacao Flood [199]

Malus domestics Flood [91,174,175] Triticum aestivum Sail 02 + heat [75-77]

Melaleuca quinquenervia Flood [176] Anoxic soln. [200]

Mornordica charantia Flood [177] Litmus americana Flood [81,201]

Nauclea diderrichli Flood [154] Vaccinium ashei Flood [93,202]

Nyssa aquatica Flood [149] Vaccinium corymbosum Flood [92,203.204]

Nyssa aquatica Flood + heat [178] Virola surinamensis Flood [156]

Panicum antidotale Flood + salt [179] Vitis sp. Flood [175]

Persea americana Flood [180] Zen mays Anoxic solo. [183,205]



Root Oxygen Deprivation 	 307

differentiated onset or recovery of stomata] response
to hypoxia or flooding have been reported among
species with varying degrees of surface differentiation
[80-82].

In rare instances, prolonged flooding has been as-
sociated with reduced RL or increased g5, usually in
highly specialized plants, such as bald cypress (Taxo-
dium distichum) or rice (Oryza sativa). which are spe-
cifically adapted to flooded environments [83,84]. We
have not attempted to comprehensively catalogue
these exceptions, which are not always consistent,
even for the particular adapted species [85], but have
found a few reports for several species [86-90]. It is not
always clear what caused these responses, although
factors may include intrinsic species adaptations to
hypoxia, gradual exposure allowing adaptation, ex-
posure brevity or an undepleted oxy gen supply.

V. STOMATA CLOSURE MECHANISMS

While there is not yet a complete understanding of the
physiological and biochemical mechanisms that bring
about stomatal closure, several processes are repeat-
edly implicated in the published literature. A number
of studies have shown increased root resistance to
water entry to meet transpirational needs [91-94].
This may be the result of loss of root hairs or micro-
rrhiza as hypoxia persists, or changes in membrane
properties reducing the hydraulic conductivity of
roots. With prolonged flooding disease entry may
physically block xylem elements [8].

Potassium ion flux is crucial to regulation of
guard cell tureor. Several researchers [9.78,95,96]
noted that the single most consistent nutritional
shift reported for plant hypoxia and flooding is a
drop in leaf or plant potassium concentration. While
reviews of nutritional involvement in root hypoxia
have noted that several other plant nutrients, particu-
larly nitrogen and phosphorus are often impacted
[96], the consistency of response and directness of
cause-effect relationship, particularly in the response
time frame of stomatal closure is less clear. Because
potassium accumulation and retention is an active
uptake process requiring outlay of energy [97], it is
rapidly disrupted when anaerobic respiration ensues
and plants become energy-starved. Loss of potassium
ion in the leaves is thought to impair the function of
the potassium ion pump responsible for maintaining
the turgor of guard cells that opens stomatal pores for
gas exchange between the atmosphere and the leaf
interior. Peaslee and Moss [98] showed that potas-
sium deficiency alone can impair stomatal opening
of corn (Zea mays), and Graham and Ulrich [99]
showed potassium deficiency reduces sugarbeet root
system permeability to water.

Many observations of stomatal closure with root
hypoxia or flooding have noted increases in leaf ab-
scisic acid (ABA) concentrations, with the ABA ori-
ginating in the hypoxic roots and then transferred to
leaves [100-109]. Abscisic acid interferes with stoma-
tal control by impairing guard cell accumulation and/
or retention of potassium ions [110] and by causing
transient potassium and chloride ion efflux [111].
Markart et al. [112] found that ABA affected the
root hydraulic conductivity.

Reduction in leaf conductance (gs), or increase in
diffusive resistance (R L) to water vapor, directly im-
pacts photosynthesis by concomitantly lowering the
rate of carbon dioxide exchange (Figure 17.8). How-
ever, because the diffusion coefficient of carbon diox-
ide in air is only about 60% that of water, assuming
all other factors equal, there should be a greater
incremental effect of stomatal closure on water
vapor transfer than on carbon fixation and photosyn-
thesis. The effect of stomatal closure on C3 plant
carbon exchange reduction is greater than on C4
plants because of the steeper concentration gradient
to sites of carbon fixation in the C4 substomatal
mesophyll [113].

However, explaining the effect of root hypoxia
on photosynthesis reduction by only considering
the effects on gas transfer into and out of the
leaf is an oversimplification. Many biochemical pro-
cesses within flooded plants are affected by root
hypoxia, and the intensity and nature of the aberra-
tions vary with stress scenarios and species as the
citations in Table 17.1 bear out. Oosterhuis et al.
[60,61] essentially demonstrated this point (Figure
17.8) for soybean. Photosynthesis was depressed to
a plateau rate by reduction of stomata] conductance
in the presence or absence of flooding, however, the
flooded plants had a lower plateau value than the
nonflooded plants, indicating the involvement of
additional factors. Gardiner and Krauss [114]
showed that the photosynthetic light response (Fig-
ure 17.9) was reduced by nearly half as the result
of flooding of cherrybark oak (Quercus pagoda).
While stomatal closure may be the most significant
mechanism restricting photosynthesis in the early
hours of root hypoxia, with prolonged oxygen
depravation the rate of photosynthesis declines in
response to other inhibitory effects on the photosyn-
thetic process involving changes in carboxylation
enzymes and loss of chlorophyll [92,93, 115-117].
Reicosky et al. [118,119] used infrared thermometry
to measure increased cotton leaf temperature when
plants were flooded. As stomata close, transpira-
tional cooling is reduced. This may also lead to
several metabolic stress reactions in addition to
de-optimization of photosynthesis if leaf heating
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FIGURE 17.8 Difference in the relation-
ship between leaf photosynthetic rate and
leaf conductance for hooded vs. non-
flooded soybean (From Ref. [9], adapted
from Refs_ [60,61].)
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FIGURE 17.9 Net photosynthetic light response of cherry-
bark oak seedlings grown in full or partial (27%) sunlight
and subjected to 30 to 45 days of flooding. Carbon assimi-
lation is reported on a leaf area basis, and each value
represents the mean V standard error for nine leaves.
(From Gardiner ES, Krauss KW. Tree Physiol. 2001;
21:1103-11 L I. With permission.)

causes plants to deviate from their ideal thermal
kinetic window [120].

Several other biochemical triggers have been im-
plicated in the closure of stomata of plants exposed to
root hypoxia although they have been less intensively
researched. These include changes in the nitrogen
metabolism of hypoxic plants [121,122], leaf ethylene
accumulation [123-127], transport of cytokinin from
the roots to the shoot [128], and possibly other as yet

unidentified biochemicals acting alone or in concert
with other signaling agents [102].

VI. SUMMARY

The negative effects of flooding and root hypoxia
on plant performance has been recognized for cen-
turies and the important role of soil oxygen deprav-
ation in triggering the metabolic and physiological
changes causing damage have been recognized with
increasing clarity for nearly a century. Strong quanti-
tative links between the soil oxygen diffusion rate
and leaf conductance to water vapor and other gases
have been documented. Flooding effects on plant
performance are primarily caused by the sharp reduc-
tion in oxygen diffusion to roots, with numerous
secondary soil physical and chemical and plant bio-
chemical or pathological effects rapidly ensuing as
flooding becomes prolonged. Direct manipulation
of soil atmospheres at optimal (non flooded) soil
water contents is a powerful tool For studying
plant response with minimal interference of ancillary
stress-causing factors. Correlation of stomatal hyp-
oxic response to soil ODR is suggested as the most
appropriate way to normalize plant response to the
primary environmental stimulus that could facilitate
discrimination of species and cultivar sensitivity to
hypoxia and offer potential for modeling the
response.
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