SALINITY AND PLANT PRODUCTIVITY

D. L. Carter

INTRODUCTION

Plant productivity is limited on an estimated one third of the irrigated land in the world or approximately 4×10^7 ha by soluble salt accumulations in the soil, often referred to as soil salinity or salinity. As irrigated agriculture expands, more salinity problems will develop because there are millions of hectares of potentially irrigable land that could become saline. Every year new salinity problem areas develop and are identified. Salinity is the most important problem facing irrigated agriculture, and solving salinity problems is one of the greatest challenges to agricultural scientists.

Much research has been conducted during the past 30 to 40 years to determine the relative tolerance of crops to salinity. Most of the salinity tolerance data available through the early 1960s was compiled into useful relationships by Bernstein in 1964, and these data have been cited and applied throughout the world.¹ Since then, many new salinity tolerance studies have been conducted, and many new management practices have been proposed, evaluated, and some of them practiced to reclaim salt-affected soils for improved crop production. Recently, Maas and Hoffman evaluated existing salinity tolerance data for agricultural crops and presented the data graphically so that the relative tolerance among crops could be easily compared.^{2.3}

THE NATURE OF SOIL SALINITY

The soil solution or the water in the soil contains soluble salts, usually as the ionic components. The ions commonly present in the greatest concentrations are Na⁺, Ca⁺⁺, Mg⁺⁺, Cl⁻, HCO₃⁻ and SO₄⁻⁻. The proportions and the amounts of each vary widely. Sometimes NO₃⁻ is present in significant concentrations, and K⁺ is generally, but not always, present in low concentrations. Some other ions are present in low concentration of all ions of the soluble salts or soil salinity generally refers to the total concentration of all ions of the soluble salts. When the total soluble salt concentration in the soil solution is high enough to limit plant growth and productivity, a salinity or soluble salt problem exists. Soils also contain slightly soluble salts like CaCO₃, but these salts do not contribute to salinity problems.

Most arid soils contain high residual salt concentrations. These residual salts result from natural weathering processes of soil parent materials, evaporation of lakes, and rainfall and evaporation over centuries. Soil salinity problems may develop in normally non-saline areas when salts are leached from some soils and carried by water to other areas where the water table is near the soil surface because of inadequate drainage; the salts are then left behind as the water evaporates from the soil. The source of water for leaching and transport of soluble salts in arid regions is generally from irrigation. Soluble salts also accumulate in soils irrigated with saline waters, particularly where drainage is poor or when too little water is applied to leach excess salts.

Water is transpired by plants in essentially the pure state just as it is evaporated from a free water surface or from the soil. Therefore, as plants use water, the salts are concentrated in the soil solution. When plants have used one half of the water stored in a soil from irrigation or natural precipitation, the salt concentration in the remaining water or soil solution will be approximately twice the original concentration. When three fourths of the initial water is used, the salt concentration will have increased approximately four times. All irrigation waters contain some salt, and the effects of this salt as plants use water depends upon the salt concentration in the irrigation water. The total soluble salt concentration determines the quality of water for irrigation; such waters are classified based upon their salt concentrations.⁴⁻⁸

SALINITY EFFECTS ON PLANTS

Excessive soluble salt concentrations or salinity affects plant growth and production primarily by increasing the osmotic potential of the soils solution.⁹ Under some conditions,¹⁰⁻¹² specific ion toxicities can also be important for some crops, particularly woody species. The physiological effects of excess salinity are many, but visual symptoms generally do not become evident until salinity conditions are extreme.

Plants affected by excessive soluble salt concentrations usually appear normal, but there is a general stunting of growth, foliage may be darker green than for normal plants, and sometimes leaves are thicker and more succulent. Woody species often exhibit leaf burn, necrosis, and defoliation resulting from toxic accumulations of Cl or Na. Chlorophyll formation is inhibited in citrus by specific ion toxicities.¹³ Occasionally, nutritional imbalances caused by salinity produce specific nutrient-deficiency symptoms.^{14,15}

The osmotic effect of salinity is to increase the osmotic potential of the soil solution, thereby making soil water less available for plant uptake. Therefore, salinity-affected crops often appear the same as crops suffering from drought. Many plants adapt to the increased salt concentrations by increasing the osmotic potential of the cell sap.^{16,17}

As the salt concentration in the soil solution increases, both the growth rate and ultimate size of most plant species progressively decrease. Salinity effects are frequently not recognized, even though yield reduction may be 20 to 30% because of the general decrease in growth rate and plant size. Not all plant parts are affected the same way, and any relationship between growth response and soil salinity must take this into account.^{18,19} The leaf-to-stem ratio of alfalfa is affected, influencing forage quality.²⁰ Vegetative production is decreased more than seed or fiber production for crops such as barley, wheat, cotton, and some grasses.^{2,3,21} In contrast, grain yields of rice and corn may be greatly reduced without appreciable reduction in vegetative production.^{22,23} Root yields of root crops are generally decreased much more than top yields.^{21,34} In contrast, top growth is affected more than root growth with some other species.

The impact of reduced plant production caused by salinity depends upon the purpose for which the plants are grown. Total yield and quality of crops grown for sale or for feed are generally most important. However, the survival and growth of plants used for landscaping and ground cover may also be important under some conditions.

118

MEASURING SOIL SALINITY

Soil salinity can be measured by several methods. Plant growth is primarily related to the osmotic potential of the soil solution in the root zone.^{25,26} Osmotic potential (Ψ) can be measured directly by freezing point depression, vapor pressure osmometers, or thermocouple psychrometers, or it can be calculated from the electrical conductivity of soil saturation extracts (EC.) by the equation

 $\Psi = -0.36 (EC_{e})^{-1}$

The saturation extract is the soil solution removed from saturated soil by suction or pressure. Measuring EC, has become widely accepted because the saturation percent-

age is easy to determine and reproduce in the laboratory over a wide soil textural range. Plant tolerance to salinity is generally based upon EC, values rather than osmotic potential or total salt concentration. Both osmotic potential and total salt concentration are readily calculated from EC, based upon the above formula and relationships developed at the U. S. Salinity Laborabory.²⁷

Instruments have been developed recently to determine the electrical conductivity of soil water (EC_{re}) in the field. Salinity sensors permit EC_{re} measurements at a given point in the soil, and the four-electrode probe can be used to measure an average or integrated EC_{re} in the field.^{28,29} The salinity sensors are useful for measuring soil solution salinity under field conditions over the ranges of soil matric potential normally encountered in the field. The four-electrode probe is a simple, rapid, diagnostic technique for determining management practices. Both methods are based upon electrical conductivity and are generally referenced to EC, values for plant productivity estimates. When specific ion toxicities are evident or suspected, the concentrations of the ions are measured in the saturation extract.

FACTORS INFLUENCING THE EFFECTS OF SALINITY ON PLANT PRODUCTIVITY

Many factors influence plant response to salinity. One factor is the growth stage. Sensitivity to salinity varies with the growth stage for many plants, particularly cereal crops. Rice is tolerant during germination, becomes sensitive during early seedling growth, and then becomes more tolerant as it matures.³⁰⁻³⁴ Barley, wheat, and corn are more sensitive during emergence and early seedling growth than during germination and grain development.^{21,22,25} Sugar beets are sensitive during germination and become tolerant after that.³⁵ Varietal differences in salinity tolerance have been observed with wheat, barley, soybeans and some other legumes, and many grasses.³⁶⁻⁴² Rootstocks for tree and vine crops differ in tolerance to total salts and also exhibit a differential susceptibility to specific ion toxicities.^{11,43-47}

The availability of plant nutrients can affect salinity tolerance; conversely, salinity and specific ion toxicities can cause nutritional disorders. Conflicting results of some salinity-nutrient interactions are found in the literature. Applications of P have increased plant production under saline conditions in some investigations but not in others. There have been reports that excess P in sand cultures may decrease salt tolerance of some crops; however, P concentrations would seldom be excessive in soils because P is adsorbed and precipitated in the soil. As the salt concentration increases, N requirements of plants generally decrease. The literature contains information on several other interacting effects of salinity and plant nutrients on growth and production. These are not discussed here, but references are provided.^{14,38,48-59} Published salinity tolerance lists of crops are generally based on data obtained where nutrient availability was adequate.

Plant response to salinity is influenced by climatic factors. Many crops are less tolerant when grown under dry, hot conditions. Relative yields of alfalfa, beans, beets, carrois, cotton, onions, squash, tomatoes, strawberry clover, and saltgrass are lower in warm than in cool climates.⁶⁰ High atmospheric humidity increases the salt tolerance of some crops, and benefits salt-sensitive plants more than tolerant crops.²⁴

Irrigation management influences plant productivity in several ways. As previously mentioned, all irrigation waters contain some salt, and as the water passes into the atmosphere through evapotranspiration processes, salts remain in the soil or the soil solution. Unless extra water is added for leaching salts from the root zone, salts will accumulate from irrigation during the season. When the irrigation water contains mod-

				Rclat E	č, m C, m	oduct	/cii /cii	*			% Productivity	Salinity	
Plant name	Scientific names	-	~	- m	4	~	6	-		•	decrease per mmhos/cm increase	threshold (EC,)	Ref.
Algerian ivy	Hedera canariensis	8	81	62	ŝ	0	0	•	•	0	ł	1.0	61
Almond	Prunus dulcis	100	16	73	55	36	18	•	0	0	18	1.5	2, 3, 12, 62, 63
Apple*	Malus sylvestris	100	16	35	ĺ	I	I	ł	I	I	I	0'1	2, 10, 62
Apricot	Prunus armeniaca	00 <u>1</u>	16	68	45	23	0	0	0	¢	23	1.6	2, 3, 10, 62, 63
Avocado	Persea americana	8	8	20	I	1	I	I	ł	I	ļ	1.0	3, 10, 62
Bean	Phaseolus vulgaris	100	81	62	43	25	9	¢	0	0	18.9	1.0	1-3, 10, 25, 64-68
Blackberry	Rubus spp.	901	89	63	4	52	•	•	c	0	22.2	1.5	2, 3, 62, 69
3 aysenberry	Rubus ursinus	001	89	67	4	22	0	0	0	0	22.2	1.5	2, 3, 62, 69
Burford holly	llex cornuta	100	82	5	36	4	0	0	0	0	ł	1.0	61
Jurnet	Sanguisorba minor	1	I	I	ł	I	I	ł	1	ļ	i		70
Carrot	Daucus carota	80	86	2	5 8	4	8	13		0	14.1	1.0	13, 10, 66, 67
Celery"	Apium graveolens	001	8	5	I	1	I	ļ	T	I	I	1.0	67
Grapefruit	Citrus paradisi	8	6	81	65	48	32	16	0	0	16.1	1.8	1, 2, 46, 62
fcavenly bamboo	Nandina domestica	8	88	35	5	47	34	20	5	¢	I	1.0	61
Hibiscus	Hibiscus rosa-sinensis culti-	8	86	5	58	42	38	15	Ŷ	0	ľ	1.0	61
	var Brilliante												
emon"	Citrus limon	001	91	5	I	I	۱	I	I	f	1	1.0	2, 10, 46, 62
Okra"	Abelmoschus esculentus	8	8	I	1	I	I	į	I	1	1		2
Dnion	Allium cepa	<u>10</u>	87	Ц	ŝ	6 6	ង	9	0	•	16.1	1.2	1-3,10
Drange	Citrus sinensis	8	25	65	ខ	48	32	2	•	0	15.9	1.7	2, 3, 10, 46, 62
Peach	Prunus persica	8	4	73	3	Э	2	•	0	¢	18.8	3.2	2, 3, 62, 63
ear"	Pyrus spp.	90i	6	75	ł	T	ł	I	1	I	ī	1.0	10, 62
Pincapple guava	Feijoa sellowiana	100	F	34	0	•	0	Ö	•	•	I	1.2	61
Jum	Prunus domestica	8	16	2	ŝ	36	18	•	0	0	18.2	1.5	2, 3, 12, 62
Prune"	Prunus domestica	8	91	75	ł	ſ	ł	I	1	I	ţ	1.0	10, 62, 63
bittosporum ⁶	Pittosporum tobira	100	68	\$	69	8	8	4	99	ନ୍ଥ	I	1.0	61
kaspberry-	Rubus idaeus	100	80	3	I	ł	I	1	I	1	I	1.0	2, 10, 62

	Ref.	61, 71 2, 3, 10, 12, 62 61
Salinity threshold	(EC.)	1,0 1.0 1.6
% Productivity decrease per	mmhos/cm increase	i E
	م	000
	∞	000
5	~	000
ivity.	۰	000
pduct	ν	0 0 81
E E	-	009
telati E0	m	885
-	~	74 67 83
	-	<u>888</u> .
	Scientific names	Rosa spp. Fragaria Trachelospermum jasmi- noides
	Plant name	Rose Sırawberty Star jasmine

Note: Salt concentration is shown as the electrical conductivity of saturated soil extracts, EC.,

- Tabled values are estimates based upon the EC, for a relative yield of 90% and yield reductions for similar crops as EC, increases. Where no productivity data are given, the plant is listed with others of similar salt tolerance. The lower part of the yield curve approaches zero asymptotically to the abscissa. Only linear data are shown. .
 - .

THE RELATIVE PRODUCTIVITY OF MODERATELY SENSITIVE PLANTS WITH INCREASING SALT

Table 2

CONCENTRATION IN THE ROOT ZONE

	REASING SALT			Salinity
	VE PLANTS WITH INCI	DT ZONE		個。Droductivity
. Table 2	THE RELATIVE PRODUCTIVITY OF MODERATELY SENSITI	CONCENTRATION IN THE RO	Relative productivity, %	EC multistant

						-	ЗС,	նա	305/6	Ħ					1	% Productivity	Salinity	
Plant name	Scientific names		7	÷	4	s	9	٢	90	¢.	10	П	12	m	4	decrease per mmhos/cm increase	threshold (EC.)	Ref.
Alfaifa	Medicago sativa	100	100	93	85	78	11	64	56	49	4	3	27	50	12	7.3	2.0	13, 10, 25, 70
Arborvitae"	Thuja orientalis	901	8	91	81	73	62	3	4	33	2	T	Т	Т	I	I	2.0	61
Bentgrass"	Agrostis palustris	ļ	ţ	ł	I	I	I	I	1	I	I	I	I	T	1	ŀ	1	2
Bottlebrash*	Callistenton viminalis	8	2	85	5	68	\$	8	4	33	1	I	ł	Ļ	1	I	1.5	61
Boxwood	Buxus microphylla	100	8	86	76	65	2	4	33	3	Ξ	•	0	•	0	10.8	1.7	61
	var. <i>japonic</i> a																	
Broadbean	Vicia faba	8	96	83	5	61	58	48	38	29	6	10	0	0	0	9.6	. 9'1	1-3, 10, 65-68
Cauliflower*	Brassica oleracea	3	001	£	85	I	I	Ì	T	I	Ì	I	I	Ì	ł	1	2.5	67
Cabbage	Brassica oferacea var,	<u>8</u>	98	88	79	69	\$	S	\$	30	ຊ	11	-	0	0	9.7	1.8	1—3,10
	capitata																	
Canarygrass, feed*	Phalaris arundinac e a	I	I	l	I	ŧ		1	ļ		1	4	1	ļ	1	I		~ -
Clover, alsike	Trifolium spp.	8	94	8	5	58	\$	34	5	9	0	Φ	0	0	0	12.0	1.5	1-3,70
ladino, red,																		-
strawberry																		
Corn, forage	Zea mays	8	8	5	84	26	69	61	2	47	6E	32	54	ŗ	2	7.4	8.1	1-3, 10, 25
Corn, grain,	Zea mays	<u>8</u>	96	2	72	8	48	36	\$	2	0	o	•	0	0	12.0	1.7	1-3, 10, 12, 64,
sweet																		67
Cowpea	Vigna unguiculata	8	8	76	61	4	£	61	4	0	ò	0	0	0	¢	14.3	1.3	2,3
Cucumber	Cucumis sativus	3	100	5	81	68	55	4	3	16	11 1	0	0	0	0	13.0	2.5	2, 3, 67
Dodonea	Dedonia viscosa var.	8	\$	86	F	68	ŝ	51	42	Ē	52	13	¢	0	¢	7,8	1.0	61
	atropurpurea																	
Flax	Linum usitatissimum	8	8	84	72	8	48	36	54	12	Ò	0	0	0	¢	12.0	1.7	13, 10
Grape	Vitis spp.	8	55	86	76	66	ŝ	47	38	28	18	¢	0	0	¢	9.5	1.5	2, 3, 12, 62, 72
Juniper	Juniperus chinensis	8	16	8	72	3	54	4 5	36	27	18	Ŷ	0	0	¢	9.5	1.5	61
Lantuna	Lantana camera	<u>1</u> 00	92	82	72	62	51	41	30	20	6	0	0	Ò	φ	ŀ	1.8	61
Lettuce	Latuca sativa	8	9	78	65	52	39	26	13	0	¢	0	0	0	•	13.0	1.3	1-3, 67
Lovegrass	Eragröstis spp.	8	8	92	83	33	66	38	6	ł	33	54	S	•	¢	8.5	2.0	2,3

,

THE RELATIVE PRODUCTIVITY OF MODERATELY SENSITIVE PLANTS WITH INCREASING SALT CONCENTRATION IN THE ROOT ZONE

						Rela	C	prod mm	uctiv hos/4	, , , , , , , , , , , , , , , , , , ,	s.					% Productivity	Salinity	
Plant name	Scientific names	_	4	5	4	Ś	9	٢	8	6	01	11	12	13	*	decrease per mmhos/cm increase	threshold (EC.)	Ref.
Meadow fox-	Alopecurus pratensis	8	S	8	76	8	8	4	£	5	5	90	Ò	0	0	9.7	1.5	1-3, 10, 70
• tail																		
Millet, foxtail	Setaria italica	I	I	ł	I	I	I	I	I	I	I	1	t	Ι	I	I		2, 5659
Muskmelon"	Cucumis melo	<u>8</u>	<u>9</u>	95	80	1	ł	I	I	I	I	1	Ι	Ì	I	I	2.5	10, 62
Oteander*	Nerium oleander	100	8	6	86	5	2	65	58	51	44	33	ន	24	١	ł	2.0	61
Pea	Pisum sativum L.	8	8	8	I	I	I	1	I	1	I	I	I	I	۱	I	2.5	65, 67
Peanut	Arachis hypogaea	8	00	8	77	\$	8	o	o	Ô	Φ	0	0	0	0	28.6	3.2	2, 3, 73
Pepper	Capsicum annuum	8	66	5	65	51	37	3	*	0	•	0	0	0	•	14.1	5.1	13, 67
Potato	Solanum tuberosum	108	96	84	12	3	4 8	36	24	12	°	0	•	0	0	12.0	1.7	1-3, 10, 67
Pyracantha	Pyracantha braperi	10	66	8	81	72	62	53	43	34	5	4	9	0	¢	9.1	2.0	61
Radish	Raphanus sativus	8	8	7	2	5	30	25	12	¢	•	0	Φ	0	•	13.0	1.2	2, 3, 67
Reed canary	Phalaris arundinacea	ł	ł	ł	1	ł	ł	ŧ	I	I	I	I	I	I	I	I		70
Rice, paddy	Oryza savita	8	8	8	88	76	63	5	39	27	2	2	0	0	Ŷ	.12.2	3.0	1-3, 10, 12,
																		30-34, 70
Sesbania	Sesbania exaltata	100	<u>100</u>	33	88	81	74	67	3	33	47	\$	8	26	61	7.0	2.3	2, 3
Spinach	Spinacia oleracea	8	100	52	85	11	2	62	55	47	6 E	33	24	1	σ	7.6	2.0	1-3, 10, 67
Squash [•]	Cucurbita maxima	8	8	8	7	1	ŀ	ł	I	I	I	ł	· 1	I	ł	I	2.5	67
Sugarcane	Saccharum officina-	8	88	2	86	81	35	69	3	5	51	\$	39	\$	28	5.9	1.7	13
	num																	
Silverberry	Elaeagnus pungens	8	95	87	78	69	59	50	41	32	53	2	16	¢	¢	. I	1.6	61
Sweet clover*	Melilotus spp.	I	I	I	ł	l	ł	i	I	I	I	I	I	I	I	·I		57, 58, 64, 70
Sweel polato	Ipomoca batatas	8	93	25	5	62	51	4	ຊ	18	~	0	0	Ŷ	•	11.0	1.5	1-3, 10, 67
Texas privet	Ligustrum lucidum	8	\$	8	55	99	56	46	36	8	16	~	0	¢	0	9.1	2.0	61
Timothy	Phieum pratense	۱	I	T	I	I	l	I	ł	ļ	1	ł	ł	۱	I	1		~
Tomato	Lycopersicon lycoper-	8	8	3	85	75	65	55	\$	36	26	91	9	0	•	9.9	2.5	I3, 10, 67
	sicum																	
Trefoil, big	Lotus uliginosus	8	100	87	89	6	30	11	0	0	0	0	0	0	0	18.9	2.3	2, 3, 70

124 CRC Handbook of Agricultural Productivity

tspp. 100 90 73 58 44 32 20 10 0 0 0 0 0 0 0 13.2 1.4 61 senticusa 100 94 81 67 54 40 27 14 0 0 0 0 0 0 0 13.3 1.5 61	arspp. 100 90 73 58 44 32 20 10 0 0 0 0 0 0 0 13.2 1.4 61 scrittiosa 100 94 81 67 54 40 27 14 0 0 0 0 0 0 0 13.3 1.5 61 5 shown as the electrical conductivity of summered soil avenue Exc			91 001 100	8	8	67	26	7	33 2	2	-	•	•	1.11	3.0	2, 3, 70
	shown as the electrical conductivity of saturated soil extension $E \sim$	spp. enticosa	88	94 81 94 81	53 67	4 S	ę %	2 2	1 1 2	00	••	00		00	13.2 13.3	1:4 1:5	19 19

4

Tabled values are estimates based upon the EC, for a relative yield of 90% and yield reductions for similar crops as EC, increases. Where no productivity - data are given, the plant is listed with others of similar saft tolerance.

THE RELATIVE PRODUCTIVITY OF MODERATELY TOLERANT PLANTS WITH Table 3

						8	Ŭ	EZ	TRA	Ĕ	Z		HE	RO R	Į Į	28	E	2		-	INCKEASI	NG SAL1	<u>د</u>
								- H	telati E	ظ ات ان ان ا	oqui mpo	:tivit; s/cm	å.								eta Productiviteu		
Plant name	Scientific names	-	7	61 1	a de la companya de		- ~						<u> </u>	2	1 3	1 2	1 3	1 :			decrease per mmhos/cm	Salinity threshold	
Alkali saca- ton*	Sporobolus airoidae	001	10	1	1	1	1		1	· 1	• •			- I	: 0	<u> </u>	9 0	2 0	<u>e</u> c	2 0	increase	(Ec.)	Ref.
Barley, for- age	Anoues Hordeum vulgare	001	Ъ.	Đ I	0 10	× Q	ĭ g	6 6	5	6 7	5	59 5	58	5	44	£	ŝ	33	12 ⁽) ac	10	6.0	12, 70 1—3,
Beet, garden	Beta vulgaris	100	00	N IQ	01 0	Ō 2	3	5	e e	4 2	۲ 4	38	29	ຊ	=	2	0	0	0	0	0.6	0	10, 64, 70
Broccoli	Brassica oler- acea var.	001	100	õ	90 90	ж Ф	0	1.6	1 5	2 4	3	52	91	9	0	0	•	0	ð		6.1	2, 8, 2	19 [.]
Bromegrass	capitata Bromis incr-	ł	1	I	I	I			1	1	f	1	i	1	I	I	1						10, 67
Clover, ber- seem	nus Trifolium al- evandrioium	100	6	91	50	9 9	0 7	4	ି ଜ	5	. 51	46	6	34	56	ន	1	. =	, - , •		1 2	I <u>-</u>	2,70
Dallis grass	Paspalum di-	1	1	I	4	1	1	1	1	l	I]	1	1	I	Į	1	, I	' !		5	3	1+ 'C '7
Dгасаеца	іасант Dracaena сп- divisa	100	£00	001	ð	ж т	2	5	. 55	8 49	64	31	22	3	4	0	0	0	- -		-		0/ 10 10
liuonymus ^r	Euonymus Japonica	I	I	ł	ļ	1	1	0	5 0	. 22	27	Q	•	0	Ŷ	0	0	•	- -	_		0.7	5 5
	var. grandi- flivra																			•			
Fescue	Festuca ela- tior	001	<u>100</u>	901	66	5		+ 84	78	73	68	62	57	52	47	Ţ.	2 2		بة. د	~	5.3	9.6	<u> </u>
fig- Hardinggrass	Ficus carica Phalaris tub-	88	<u>8</u>	81	8 <u>1</u>	88	~ % 8	18	1 1		ļ	I	Ι	1	I	.	•	1	1		ł	4.2	10, 70 10, 62
1	erosa		3	3		2	ŝ	2	74	67	59	22	4	36	53	5	प	- vo	0		7.6	- 4	1, 2, J, 10, 70
Kale"	Brassica cam-	8	8	10	9	010	01 0	e C	- -		1												
Lime, rang-	pestris Citrus auran-	I	ŀ	: I	; I	; I , .	: 1 2 .	· ·	ו : י כ	1 !	i ,	1.	1	I	1	t	I	ł	1	t	1	6.5	67

Ş

Į

i

t I I

I 1

1 I

f

11.11 tifolia į

pur'

í,

.

CRC Handbook of Agricultural Productivity 126

67	5	62	5	ž	ų,	2 10	5	<u>ו</u> וו	70 10, 12,	64, 70 10, 62	70 °01	2, 12,	22 22	5, -		to 'o' -	10, 74	1, 3,	10, 64	; 2 [] :	10, 40, 64	2, 3, 70	•	1 1 2	n/ 'n	[]	10,	38,	6	70, 75
6.5	;	ł	I			4.0		1.5	I	4 U) r	I		13	-	5 9	2	4.8		5.0		2.8		0.0		6.0				
I		1	ł		I			6.2	1	I		ì		4		1		I		20.0		4.3	0.01	10.01		7.1			•	
I		1	!		I	I		0	1	ļ		ĺ		<	\$	1		0		0		30	<	>		7				
1		L	I		ł	1		0	Ι	1		Ι		•	>	I		80		0		ŝ	-	>		14				
1		I.	I		I	I		4	I	I		I		1	:	1		2		0		38	ç	Þ		51				
I		1	ł		I	I		10	ł	I		ŧ		1 7	1	i		22		0		43	9	2		59				
I		I	1		ļ	ł		16	I	J		I		2	}	I		3		•		48	¢	>		36				
J		I	I		I	I		22	I	1		I		l %	R	I		36		0		22	S	2		43				
ł		ł	I		1	I		29	I	I		Ι	ł	44		I		43		0		56	ŝ	\$		8				
ļ		I	1		I	I		35	ł	I		1	۱	\$!	S		ŝ		0		61	2	2		5				
1			I		1	I		41	Ι	l		I	I	5		5		56		•		3	40	2		2				
					1	I		4	1	1		I	1	63		8		3		¢		69	9	\$		2				
1		j	1			1		23	1	I		ł	I	74		8		2		20		13	S	}		62				
1		l	1		i	I		8	Ι	ł		Ι		82		8		78		4		78	2	2		86				
8			1		I	I		99	ł	I		ł	I	89		57		84		60		82	80	Ì		33				
8			I		1	85		72	Ι	85		1	I	97		8		S		80		86	8	1		8				
8	i		1		1	8		78	Т	8		Ι	1	8		8		8		8		61	8	•		8				
8	I		I		I	8		84	1	8		ŧ	I	8		8		8		8		33	8			8				
8			I		Ι	00		91	1	8		1	I	\$		8		8		8		66	8			8				
8	1		1		Т	8		97	I	8		1	1	8		8		8		8		8	8			≂ 8				
3	ł		I		Ι	100		8	1	8		1	Ì	100		100		8		8		8				≍ 8				
Brassica cam-	pestris Citrus auran-	tifolia	Citrus nobilis		Astragalus	Olea euro-	paca	Dactylis	giuniciaia Avena sativa	Punica gran-	atum	Chloris gay-	ana Socale cereale	Lolium per-	enne	Carthamus	tinctorius	Sorghum bi-	color	Glycine max		Sorghum su-] daneose	Lotus corni-	culatus ten-	uifolium	Triticum aes-	[UAAI]			
Nale ²	Líme, rane-	pur"	Mandaria,	, cleopatra*	Milkvetch*	Olive		Orchardgrass	Oats	Pomegran-	ate"	Rhodesgrass*	Rye, hay"	Ryegrass,	perennial	Safflower [*]		,munghoc		Soybean		Sudangrass	Trefoit,	birdsfoot		Wheat				

Volume I 127

Table 3 (continued)	ATIVE PRODUCTIVITY OF MODERATELY TOLERANT PLANTS WITH INCREASING SALT	CONCENTRATION IN THE ROOT ZONE
	THE RELATIVE P	

128

								Rela	BC.	prod	uctivi Nos/c	р Б								چو Productivity		
Plant name	Scientific names		~	, m	4	s s	ە ا	~	~	م	2		2		4 12	16	17	8	5	decrease per mmhos/cm increase	Sainuty threshold (Ec.)	Ref.
Wheatgrass,	Agropyron	l	I	I	1	I	1	I	ł	ł	I	1	, I	1	1	1	1	1	I	I	I	3
siender Wheatgrass.	tracnycau- lum Agrobyron	I	ŧ	I	ł	- I	I	1	ł	l	I	F	Í	i	1	1	1	I	i	I	ļ	70
western" Wildrye,	smithi Elymus triti-	1 00	8	98	92	86	8	74	68	62	36	ŝ	4	8	2	ম ৬	1	-	2	6.0	2.7	1—3, 10-20
beardless Wildrye,	coides Elymus cana-	I	Ι	j	Ι	ţ	I	ļ	Ι	Т	ł	Ι	1	í		۹ ۱	ļ	1	l	ł	I .	202
Canada" Note: Salt oo	densis ncantration is sho	is amy	c the r	electr	ical c	npuo	ctivit	vofs	atura	ated :	soile	ktrac	រ ម្ម	ជំ								

JOIN OWL COURCEINGUN

- Tabled values are estimates based upon the EC, for a relative yield of 90% and yield reductions for similar crops as EC, increases. Where no productivity data are given, the plant is listed with others of similar sait tolerance. .
 - The lower part of the yield curve approaches zero asymptotically to the abscissa. Only linear data are shown.
 - Tabled values are based upon three data points available in the literature.
- Tabled values based upon three data points. Productivity drops sharply towards zero for the lower 50% productivity.

CRC Handbook of Agricultural Productivity

Z		Ref.	3, 10, 12,	25, 36, 37, 64, 70	70, 12, 10, 12, 70	61	۲ ا	10, 12,	2, 3, 62	5	70	12, 70	02		61	1—3. 10, 12,	25, 64	9 11
RATION	Salinity	threshold (EC,)	8.0		6.9	8.5	r 7		4.0		0°0	ł	ţ		¢.\$	7.0	L	1
ONCENT	ø% oductivity serease per	increase	5.0		6.4	I	•	2.2	9 5		1	ł		١	ł	5.9		l
Table 4 TOLERANT PLANTS WITH INCREASING SALT C THE ROOT ZONE	Relative productivity, % Pr EC., mmhos/cm de	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	100 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20		99 93 87 80 74 67 61 54 48 42 35 29 22 16 10 3 0 0			100 98 93 88 83 78 73 67 62 57 52 47 41 36 31 26 21 16		1 89 86 82 78 75 71 68 64 60 57 53 49 46 42 39 33 31 20					s 1s 68	0 1M0 94 88 82 76 61 65 59 53 47 41 35 29 24 18 12 6 0		1]]]] []]]]]]]]]]]]]]
OF			, <u>8</u>		001		8	8		5	ğ		1	1	ک مە	· · ·	2	1
TΤ		-	, <u>8</u>		100		3	8		×			(1	e c	, <u>,</u>	2	1
XIV VIT		•	* 8		90		001	00		10	i		ł	1	9		4	1
ATIVE PRODUC			Scientific name Hordeurn vulgare		Cynodon daetylon		Bougainvillea	spectabilis Gossypium hirsu-	um .	Phoenix dactyli-	fera	Carissa granur- flora	Puccinellia nutlal-	uana Bronus cathartí-	cus Definition	Kosmarijuus juuk- woodii	Beta vulgaris	Distichlis stricta
THE RELA	'n	·	Plant name Barley ervin	Bancy, grant	Bermuda grass		Bougainvillea*	Cotton		Date	.,	Natal plum"	Nutall alkali	grass	NCSULC BLADS	Rosemary	Sugarbeet	Saltgrass

Volume I

129

Table 4 (continued)	E RELATIVE PRODUCTIVITY OF TOLERANT PLANTS WITH INCREASING SALT CONCENTRATION IN	THE ROOT ZONE
	HEI	

130

							~	elativ	ve pr	oduc	tivity	\$						ß			
								ă	E S	mhos	√cm		ļ		i	i		Productivity			
Plant name	Scientific name	4	Ŷ	Ŷ	~	00	6	101	1 12	13 1	14 13	16	17 18	6	5 8	ន	23 24	decrease per mmhos/cm increase	Salinity threshold (EC.)	d Ref.	
Wheatgrass, crested	Agropyron deser- torum	98	94	8	86	82	78.7	4 70	66	52 58	54	50 44	5 42	38 37	8	26 2	8	4.0	3.5	13, 10	
Wheatgrass,	Agropyron crista-	8	8	8.	8	55	90 8	3 76	69	52 55	8 4	41 34	1 28	21 14	5	0	o	6.9	7.5	2, 3	
tatiway Wheatgrass, tall	tum Agropyron elonga- tum	100	8	100	1 00	98	9 4 8	9 85	18	ст г 13	89	57 62	26	52 47	43	е 6	31	4.2	7.5	1—3. 10-70	
Wildrye, altai	Elymus angustus	8	8	8	ł	1	1	1	ł		j	1	ļ	1	1	1	1	. I	I	10, /0	
Wildrye, Rus- sian*	Elymus psathyros- tachys juncea	ł	I	ļ	1	I.	ł	1	İ		i.	ł	Ì	↓	I	t t	1	ł	I	7	
Note: Salt conc	entration is showл as t	he elec	strica] солс	luctiv	ity of	satu	rated	soi	extra	cts, F	្លុះ									

- Tabled values are estimates based upon the EC, for a relative yield of 90% and yield reductions for similar crops as EC, increases. Where no productivity data are given, the plant is listed with others of similar salt tolerance.
 - The lower part of the yield curve approaches zero asymptotically to the abscissa. Only linear data are shown.
 - Tabled values are based upon three data points available in the literature.

Ļ

REFERENCES

- Bernstein, L., Salt Tolerance of Plants. U. S. Dep. Agric. Inf. Bull., No. 283, U.S. Department of Agriculture, Washington, D.C., 1964, 10-12.
- Maas, E. V. and Hoffman, G. J., Crop salt tolerance current assessment, J. Irrig. and Drain. Div., Proc. Am. Soc. Civ. Eng., 103(1R2), 115-134, 1977.
- Maas, E. V. and Hoffman, G. J., Crop salt tolerance: Evaluation of existing data, in Managing Saline Water for Irrigation, Proc. Internat. Conf. on Managing Saline Water for Irrigation: Planning for the Future, Dregne, H. E., Ed., Texas Technical University, Lubbock, Texas, 1977, 187-198.
- 4. Babcock, K. L., Carlson, R. M., Schulz, R. K., and Overstreet, R., A study of the effect of irrigation water composition on soil properties, *Hilgardia*, 29, 155–164, 1959.
- 5. Carter, D. L., Managing Moderately Saline (Salty) Irrigation Water, Univ. of Ida. Curr. Inf. Ser., No. 107, University of Idaho, Moscow, 1969, 2.
- 6. Rhoades, J. D., Quality of water for irrigation, Soil Sci., 113, 277-284, 1972.
- 7. Wilcox, L. F., Classification and Use of Irrigation Waters, U. S. Dep. Agric. Circ. No. 969, 1955, 9.
- Wilcox, L. V., Determining the Quality of Water for Irrigation, U.S. Dep. Agric. Inf. Bull. 197, U.S. Department of Agriculture, Washington, D.C., 1958, 3-4.
- 9. Bernstein, L., Osmotic adjustment of plants to saline media. I. Steady state, Am. J. Bot., 48, 909-918, 1961.
- Bernstein, L., Crop growth and salinity, in Drainage for Agriculture, Agronomy 17, van Schilfgaarde, J., Ed., American Society of Agronomy, Madison, 1974, 39-54.
- 11. Bernstein, L., Brown, J. W., and Hayward, H. E., The influence of rootstock on growth and salt accumulation in stone-fruit trees and almonds, *Proc. Am. Soc. Hortic. Sci.*, 68, 75-86, 1956.
- 12. Hayward, H. E. and Bernstein, L., Plant-growth relationships on salt affected soils, Bot. Rev., 24, 584-635, 1958.
- 13. Carter, D. L. and Myers, V. I., Light reflectance and chlorophyil and caratene contents of grapefruit leaves as affected by Na₂SO₄, NaCl, and CaCl₂, Proc. Am. Soc. Hortic. Sci., 82, 217-221, 1963.
- Lunin, J. and Gallatin, M. H., Salinity-fertility interactions in relation to the growth and composition of beans I. Effect of N, P, and K, Agron. J., 57, 339-342, 1965.
- Ravikovitch, S. and Porath, A., The effects of nutrients on the salt tolerance of crops, *Plant Soil*, 26, 49-71, 1967.
- Bernstein, L., Osmotic adjustment of plants to saline media. I. Steady state, Am. J. Bot., 48, 909-918, 1961.
- 17. Bernstein, L., Osmotic adjustment of plants to saline media. II. Dynamic phase, Am. J. Bot., 50, 360-370, 1963.
- Bernstein, L. and Pearson, G. A., Influence of integrated moisture stress achieved by varying the osmotic pressure of culture solutions on growth of tomato and pepper plants, Soil Sci., 77, 335-368, 1954.
- 19. Meiri, A. and Poljakoff-Mayber, A., Effect of various salinity regimes on growth, leaf expansion and transpiration rate of bean plants, Soil Sci., 109, 26-34, 1970.
- Hoffman, G. J., Maas, E. V., and Rawlins, S. L., Salinity-ozone interactive effects on alfalfa yield and water relations, J. Environ. Qual., 4, 326-331, 1975.
- Ayers, A. D., Brown, J. W., and Wadleigh, C. H., Salt tolerance of barley and wheat in soil plots receiving several salinization regimes, Agron. J., 44, 307-310, 1952.
- 22. Kaddah, M. T. and Ghowail, S. L. Salinity effects on the growth of corn at different stages of development, Agron. J., 56, 214-217, 1964.
- Pearson, G. A., Factors influencing salinity of submerged soils and growth of Calero rice. Soil Sci., 87, 198-206, 1959.
- 24. Hoffman, G. J. and Rawlins, S. L., Growth and water potential of root crops as influenced by salinity and relative humidity, Agron. J., 63, 877-880, 1971.
- Bernstein, L. and Hayward, H. E., Physiology of salt tolerance. Annu. Rev. Plant Physiol., 9, 25-46, 1958.
- Bernstein, L., Tolerance of plants to salinity, J. Irrig. and Drain Div., Proc. Am. Soc. Civ. Eng., 87(IR4), 11, 1961.
- U.S. Salinity Laboratory Staff, Determination of the properties of saline and alkali soils, in *Diagnosis and Improvement of Saline and Alkali Soils*, Richards, L. A., Ed., U.S. Dep. Agric. Hdbk. No. 60, U.S. Department of Agriculture, Washington, D.C., 1954, 7-23.
- Oster, J. D. and Ingvalson, R. D., In situ measurement of soil salinity with a sensor, Soil Sci. Soc. Am. Proc., 31, 572-574, 1967.
- Rhoades, J. D. and Ingvalson, R. D., Determining salinity in field soils with soil resistance measurements, Soil Sci. Soc. Am. Proc., 35, 54-60, 1971.

- Kaddah, M. T., Salinity effects on growth of rice at the seedling and inflorescence stages of development, Soil Sci., 96, 105-111, 1963.
- Narale, R. P., Subramanyam, T. K., and Mukherjee, R. K., Influence of salinity on germination, vegetative growth and grain yield of rice (*Oriza sativa* var. Dular), Agron. J., 61, 341-344, 1969.
- Pearson, G. A. and Ayers, A. D., Rice as a Crop for Salt-Affected Soil in Process of Reclamation, U.S. Dep. Agric, Prod. Res. Rep. No. 43, 1960, 7-10.
- 33. Pearson, G. A., Ayers, A. D., and Eberhard, D. L., Relative salt tolerance of rice during germination and early seedling development, Soil Sci., 102, 151-156, 1966.
- 34. Pearson, G. A. and Bernstein, L., Salinity effects at several growth stages of rice, Agron. J., 51, 654-657, 1959.
- Francois, L. E. and Goodin, J. R., Interaction of temperature and salinity on sugarbeet germination, Agron. J., 64, 272-273, 1972.
- Ayers, A. D., Germination and emergence of several varieties of barley in salinized soil cultures, Agron. J., 45, 68-71, 1953.
- 37. Donovan, T. J. and Day, A. D., Some effects of high salinity on germination and emergence of barley (Hardeum vulgare L. emend Lam.), Agron. J., 61, 236-238, 1969.
- 38. Torres, B. C. and Bingham, F. T., Salt tolerance of Mexican wheat. I. Effect of NO, and NaCl on mineral nutrition, growth and grain production of four wheats, Soil Sci. Soc. Am. Proc., 37, 711-715, 1973.
- Greenway, H., Plant response to saline substrates. VII. Growth and ion uptake throughout plant development in two varieties of Hordeum vulgare, Aust. J. Biol. Sci., 18, 763-779, 1965.
- 40. Abel, G. H. and MacKenzie, A. J., Salt tolerance of soybean varieties (*Glycine max. L. Merrill*) during germination and later growth, *Crop Sci.*, 4, 157-161, 1964.
- Mitkees, A. I., Selim, M. H., and Mashaly, A., Effect of salinity on five berseem varieties in relation to their dry matter and nitrogen contents, Agric. Res. Rev., 50, 19-29, 1972.
- Dregne, H. E., Effects of Various Salts on Barley Growth, New Mexico Agric. Exp. Stn. Res. Rep. 62, New Mexico Agricultural Experiment Station, Los Cruces, 1962, 2-5.
- Cooper, W. C., Salt Tolerance of Avocados on Various Rootstocks, Tex. Avocado Soc. Yearb., Texas Avocado Society, Weslaco, 1951, 24-28.
- 44. Cooper, W. C., Toxicity and accumulation of salts in citrus trees on various rootstocks in Texas, Florida State Hortic. Soc. Proc., 74, 95-104, 1961.
- 45. Peynado, A. and Young, R., Performance of nucellar red blush grapefruit trees on 13 kinds of rootstocks irrigated with saline and boron-contaminated well water over a 3-year period, J. Rio Grande Val. Hortic. Soc., 16, 52-58, 1962.
- 46. Ream, C. L. and Furr, J. R., Salt tolerance of some citrus species, relatives and hybrids tested as rootstocks, J. Am. Soc. Hortic. Sci., 101, 265-267, 1976.
- 47. Bernstein, L., Francois, L. E., and Clark, R. A., Effect of grape rootstocks on chloride accumulation in leaves, J. Am. Soc. Hortic. Sci., 94, 584-590, 1969.
- 48. Bernstein, L., Francois, L. E., and Clark, R. A., Interactive effects of salinity and fertility on yields of grains and vegetables, Agron. J., 66, 412-421, 1974.
- 49. Lunin, J., Gallatin, M. H., and Batchelder, A. R., Interactive effects of soil fertility and salinity on the growth and composition of beans, Proc. Am. Soc. Hortic. Sci., 58, 350-360, 1964.
- Ehrler, W. and Bernstein, L., Effects of root temperature, mineral nutrition, and salinity on the growth and composition of rice, Bot. Gaz., 120, 64-74, 1958.
- Langdale, G. W. and Thomas, J. R., Soil salinity effects on absorption of nitrogen, phosphorus, and protein synthesis by coastal bermudagrass, Agron. J., 63, 708-711, 1971.
- 52. Langdale, G. W., Thomas, J. R., and Littleton, T. G., Nitrogen metabolism of stargrass as affected by nitrogen and soil salinity, Agron. J., 65, 468-470, 1973.
 - 53. Langdale, G. W., Thomas, J. R., and Littleton, T. G., Influence of soil salinity and nitrogen fertilizer on spinach growth, J. Rio Grande Val. Hortic. Soc., 25, 61-66, 1971.
 - 54. Khalil, M. A., Amer, F., and Elgabaly, M. J., A salinity-fertility interaction study on corn and cotton, Soil Sci. Soc. Am. Proc., 31, 683-686, 1967.
 - 55. Maas, E. V., Ogata, G., and Garber, M. J., Influence of salinity on Fe, Mn, and Zn uptake by plants, Agron. J., 64, 793-795, 1972.
 - Ravikovitch, S., Effects of brackish irrigation water and fertilizers on millet and corn, Exp. Agric., 9, 181-188, 1973.
 - Ravikovitch, S. and Yoles, D., The influence of phosphorus and nitrogen on millet and clover growing in soils affected by salinity, 1. Plant development, *Plant Soil*, 35, 555--567, 1971.
 - Ravikovitch, S. and Yoles, D., The influence of phosphorus and nitrogen on millet and clover growing in soils affected by salinity. II. Plant composition, *Plant Soil*, 35, 569-588, 1971.
 - 59. Ravikovitch, S. and Navrat, J., The effect of manganese and zinc on plants in saline soil, Soil Sci., 121, 25-31, 1976.

- Magistad, O. C., Ayers, A. D., Wadleigh, C. H., and Gauch, H. G., Effect of salt concentration, kind of salt, and climate on plant growth in sand cultures, *Plant Physiol.*, 18, 151-166, 1943.
- 61. Bernstein, L., Francois, L. E., and Clark, R. A., Salt tolerance of ornamental shrubs and ground covers, J. Am. Soc. Hortic. Sci., 97, 550-556 1972.
- Bernstein, L., Salt Tolerance of Fruit Crops, U.S. Dep. Agric. Inf. Bull. 292, U.S. Department of Agriculture, Washington, D.C., 1965, 3-6.
- Wadleigh, C. H., Hayward, H. E., and Ayers, A. D., First year growth of stone fruit trees on saline substrates, Proc. Am. Soc. Hortic. Sci., 57, 31-36, 1951.
- 64. Bernstein, L., Salt Tolerance of Field Crops, U.S. Dep. Agric. Inf. Bull. 217, U.S. Department of Agriculture, Washington, D.C., 1960, 4.
- Lagerwerff, J. W., Osmotic growth inhibition and electrometric salt-tolerance evaluation of plants, Plant Soil, 31, 77-96, 1969.
- 66. Lagerwerff, J. W. and Holland, J. P., Growth and mineral content of carrots and beans as related to varying osmotic and ionic-composition effects in saline-sodic sand cultures, Agron. J., 52, 603-608, 1960.
- 67. Bernstein, L., Salt Tolerance of Vegetable Crops in the West, U.S. Dep. Agric. Inf. Bull. 205, U.S. Department of Agriculture, Washington, D.C., 1959, 3.
- Ayers, A. D. and Eberhard, D. L., Response of edible broadbean to several levels of salinity, Agron. J., 52, 110-111, 1960.
- Ehlig, C. F., Salt tolerance of raspberry, boysenberry, and blackberry, Proc. Am. Soc. Hortic. Sci., 85, 318-319, 1964.
- Bernstein, L., Salt Tolerance of Grasses and Forage Legumes, U. S. Dep. Agric. Inf. Bull. 194, U.S. Department of Agriculture, Washington, D.C., 1958, 5.
- Yaron, B., Zieslin, J., and Halevy, A. H., Response of Baccara roses to saline irrigation, J. Am. Soc. Hortic. Sci., 94, 481-484, 1969.
- Ehlig, C. F., Effects of salinity on four varieties of table grapes grown in sand cultures, Proc. Am. Soc. Hortic. Sci., 76, 323-331, 1960.
- Shalhevet, J., Reiniger, P., and Shimshi, D., Peanut response to uniform and non-uniform soil salinity, Agron. J., 61, 384-387, 1969.
- 74. Francois, L. E., Yermanos, D. M., and Bernstein, L., Salt tolerance of safflower, *Calif. Agric.*, 18, 12-14, 1964.
- Bernal, C. T., Bingham, F. T., and Oertli, J., Salt tolerance of Mexican wheat. II. Relation of variable sodium chloride and length of growing season, Soil Sci. Soc. Am. Proc., 38, 777-780, 1974.