Skip to main content

Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi

Entry, J.A. and Watrud, L.S. and Reeves, M. (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environmental Pollution. 104:449-457.

[img] PDF
980.pdf

Download (590kB)

Abstract

The use of plants to accumulate low level radioactive waste from soil, followed by incineration of plant material to concentrate
radionuclides may prove to be a viable and economical method of remediating contaminated areas. We tested the influence of
arbuscular mycorrhizae on 137Cs and 90Sr uptake by bahia grass (Paspalum notatum), johnson grass (Sorghum halpense) and switchgrass
(Panicum virginatum) for the effectiveness on three different contaminated soil types. Exposure to 137Cs or 90Sr over the course of
the experiment did not affect above ground biomass of the three grasses. The above ground biomass of bahia, johnson and switchgrass
plants accumulated from 26.3 to 71.7% of the total amount of the 137Cs and from 23.8 to 88.7% of the total amount of the 90Sr
added to the soil after three harvests. In each of the three grass species tested, plants inoculated with Glomus mosseae or Glomus
intraradices had greater aboveground plant biomass, higher concentrations of 137Cs or 90Sr in plant tissue, % accumulation of 137Cs
or 90Sr from soil and plant bioconcentration ratios at each harvest than those that did not receive mycorrhizal inoculation. Johnson
grass had greater aboveground plant biomass, greater accumulation of 137Cs or 90Sr from soil and plant higher bioconcentration
ratios with arbuscular mycorrhizal fungi than bahia grass and switchgrass. The greatest accumulation of 137Cs and 90Sr was observed
in johnson grass inoculated with G. mosseae. Grasses can grow in wide geographical ranges that include a broad variety of edaphic
conditions. The highly efficient removal of these radionuclides by these grass species after inoculation with arbuscular mycorrhizae
supports the concept that remediation of radionuclide contaminated soils using mycorrhizal plants may present a viable strategy to
remediate and reclaim sites contaminated with radionuclides.

Item Type: Article
NWISRL Publication Number: 0980
Subjects: Irrigated crops > Grass forage
Mass Import - autoclassified (may be erroneous)
Depositing User: Dan Stieneke
Date Deposited: 20 Nov 2010 21:54
Last Modified: 17 Nov 2016 16:11
Item ID: 707
URI: https://eprints.nwisrl.ars.usda.gov/id/eprint/707