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STOMATAL CLOSURE IN OXYGEN-STRESSED PLANTS

R. E. SOJKA

Stomatal closure of plants in flooded soil,
as determined by leaf gas exchange, has
been recognized since 1973, and for simple
hypoxia since 1975. At least 58 species
have been shown to close stomata with hy-
poxic or flooded conditions. Various fac-
tors interact to affect the relationship be-
tween rhizosphere oxygen availability, as
measured by soil oxygen diffusion rate
(ODR), and degree of stomatal closure.
These factors include root temperature,
species, plant growth stage, plant mineral
nutrition, and duration and nature of hy-
poxia. Soil water content, bulk density,
and temperature also influence ODR. Ab-
scisic acid accumulation in leaves appears
to induce stomatal closure, as a stress re-
sponse to root hypoxia, through its effect
on potassium ion regulation of guard cell
turgor. Stomatal closure generally persists
well beyond actual soil hypoxia. Photosyn-
thesis is reduced by root hypoxia, both by
reduction of leaf gas exchange and by a
lowering of the photosynthetic rate at a
given leaf gas exchange rate. This phenom-
enon deserves greater attention in evalu-
ating and modelling of crop response to soil
hypoxia and as a sensitive indicator of se-
verity of soil hypoxic stress.

Many deleterious effects of waterlogging on
plants have been recognized for centuries (Clem-
ents 1921). As early as 1853 (Boussignault and
Lewy 1853) soil oxygen's specific role in main-
taining plant vigor was recognized. By the
1950's, some plant physiological flooding re-
sponses were known to resemble drought re-
sponses (Kramer and Jackson 1954). A com-
monly noted expression of this syndrome was
the rapid wilting of susceptible crops such as
tobacco (Nicotiana tabacum) and tomato (Ly-
copersicon esculentum).

As instrumentation has become available to
monitor stomatal gas exchange, it has become
apparent that stomatal closure is an important
component of whole-plant stress response to
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root zone oxygen deprivation. This paper traces
the development of information on root oxygen-
related stomatal response. Several suggestions
are offered for application of current knowledge
and for further research.

RECOGNITION OF THE PHENOMENON

Childers and White (1942) documented re-
duced transpiration and photosynthesis within
2 to 7 days after flooding of apple trees (Malus
domestica). Slight elevation of transpiration and
photosynthesis immediately upon inundation
reflected relief of minor water stress. Flooding
caused extensive root necrosis and reduced leaf
expansion, but percent of open plus partially
open stomata and leaf temperature were unaf-
fected. These results resemble most findings of
related studies to the present day. Current un-
derstanding of leaf conductance and of technical
limitations of thermocouple thermometry, how-
ever, challenges their original interpretation
that stomata and leaf temperature were unaf-
fected.

Increased leaf diffusive resistance (the recip-
rocal of leaf conductance) with flooding was first
measured by Moldau (1973) for bean plants
(Phaseolus vulgaris). A similar observation was
reported in 1975 by Regehr et al. for Populus
deltoides. These first measurements of increased
leaf diffusive resistance (RL) confirmed that
flooding impairs normal plant control of leaf gas
exchange and regulation of water and solute
transport. They also provided a credible expla-
nation for earlier observations of reduced leaf
damage by airborne oxidants when exposure
occurred during flooding (Stolzy et al. 1961;
Dugger and Ting 1970).

Various causative mechanisms of plant flood-
ing response had been implicated, including ob-
struction of xylem elements by disease orga-
nisms, increased root membrane resistance to
water, and plant nutritional and hormonal im-
balances caused by flooding (Kramer and Jack-
son 1954; Bradford 1982; Stolzy and Sojka 1984).
It was generally assumed that exclusion of oxy-
gen from the rhizosphere was involved in the
predisposition of plants to this syndrome. In-
deed a substantial body of work has used con-
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TABLE 1

Species for which RL has been shown to increase in response to root-zone flooding or hypoxia

Species	 Stimulus	 Citation

Acer rubrum	 soil 02 + CH4
Acer saccharum	 soil 02 + CH4
Actinidia chinensis	 flood

anoxic soln.
Apios americana	 flood
Avicennia marina 	 flood
Betula papyrifera 	 flood
Betula nigra	 flood
Betula platyphylla	 flood
Bruguiera gymnorrhiza 	 flood + salt

flood
Citrus aurantium	 flood
Citrus jambhiri	 flood
Citrus sinensis	 flood
Capiscum annuum	 flood
Carya illinoensis	 Soil 0 2

flood
Cydonia oblonga	 anoxic soln.

flood
Eucalyptus camaldulensis 	 flood
Eucalyptus globulus 	 flood
Eucalyptus obliqua	 flood
Fraxinus pennsylvanica 	 flood
Glycine max	 flood

Soil 0,
Gmelina arborea	 flood
Gossypium barbadense	 Soil 0 2
Gossypium hirsutum	 flood

Soil 02
Helianthus annuus	 anoxic soln.

flood
anoxic soln. + salt
Soil 02 + heat

Hydrangea macrophylla	 flood
Liquidambar styraciflua	 flood
Lycopersicon esculentum	 flood
Malus domestica 	 flood
Melaleuca quinquenervia 	 flood
Nauclea diderrichii	 flood
Nyssa aquatica	 flood + heat
Phaseolus vulgaris 	 flood

anoxic soln.
Picea glauca	 flood + heat
Picea mariana	 flood + heat
Pisum sativum	 flood
Poa pratensis	 compaction + irr.
Populus deltoides	 flood
P. trichocarpa x deltoides	 anoxic soln.
Prunus persica	 anoxic soln.

flood
Pyrus betulaefolia	 anoxic soln.

flood
Pyrus calleryana	 anoxic soln.

flood

8
8

95
108

62
64
68
68

122
65
64

118,123
118,123
123
84

109
107,125

7
6

12,79
12,79
12
49,79,99,120
70,71

110
73,74

112
58

112
31
34,72
51,52

112,113
102

81
15,16,17,18,46,53,86
6,69

100
74
28
59,96
65,96,97,66
33
33
42,43,132

3
79,91
65,105,106

7
6,10
5,7
6
5,7
6
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Species Stimulus Citation

Pyrus communis anoxic soln. 5, 7
flood 6

Pyrus pyrifolia flood 6
Pyrus ussuriensis flood 6
Quercus falcata flood 80
Quercus macrocarpa flood 119
Quercus rubra flood 79
Rhizophora mucronata flood 64
Salix discolor anoxic soln. 7

flood 6
Salix nigra flood 79
Simmondsia chinensis Soil 02 + heat 112, 113
Sorghum bicolor flood 72
Tectona grandis flood 74
Theobroma cacao flood 101
Triticum aestivum Soil 02 + heat 111, 112, 113
Ulmus americana flood 67, 79
Vaccinium ashei flood 25
Vaccinium corymbosum flood 1, 24
Zea mays anoxic soln. 96, 126

trolled soil atmospheres to elicit various phys-
iological, nutritional, and pathological responses
seen with flooding (Stolzy and Sojka 1984).
Sojka et al. (1975) measured increased R, when
soil oxygen was excluded from roots of wheat
(Triticum aestivum) grown at optimal water and
nutritional levels. This finding confirmed that
during flooding, the physiological and metabolic
processes ultimately resulting in stomatal clo-
sure were linked to inadequate oxygen diffusion
to living roots.

Increased R, associated with poor soil aera-
tion has been documented for at least 58 species
(Table 1). Though beyond the scope of this
paper, it is important to note that many papers
that did not monitor R, per se have instead
reported such closely related variables as appar-
ent photosynthesis, transpiration, water use,
and leaf CO 2 absorption in relation to rhizo-
sphere flooding and hypoxia (e.g., Phung and
Knipling 1976; Coutts 1981; Pezeshki et al.
1989). Table 1 reveals that most studies utilized
flooding of roots in soil as the method of oxygen
exclusion. Many flooding studies documented
the soil oxygen diffusion rate (ODR) or redox
potential (Eh ) of the root zone.

Flooding is the most common field soil hy-
poxic syndrome, but its effect on plant oxygen
relationships is confounded by interactions of
non-oxygen factors in the flooded environment
(e.g., by nutrient losses, diseases, nematodes,
trace-gas, and toxin generation). Further efforts

to separate oxygen effects on R,, from the com-
plex flooding syndrome are warranted. Indeed
in the few instances where several oxygen exclu-
sion techniques have been compared factorially,
plant responses have not always been uniform
among modes of hypoxia. A few studies imposing
hypoxic regimes or flooding have reported neu-
tral or reverse stomatal responses (Harrington
1987; Osundina and Osonubi 1989; Pezeshki
et al. 1990; Javier 1985; Thornton and Wample
1980). It was not always clear why these incon-
sistent results occurred although intrinsic spe-
cies adaptation to hypoxia, gradual exposure
allowing acclimation, exposure brevity, or un-
depleted oxygen regimes may have been factors
in some instances.

RELATING 11, TO SOIL OXYGEN

Various parameters, including flood du-
ration, soil gas composition and/or concen-
tration, and soil porosity have provided rea-
sonably good qualitative indices of plant
disposition toward stomatal closure. These
parameters have provided useful diagnostic
criteria of anoxia, particularly for inter-
preting stomatal time-course response
data. Using the equation form R L = a(ODR) b ,
where a and b are empirical coefficients, soil
ODR has been the only aeration index capable
of quantitatively predicting diffusive resistance
(Sojka and Stolzy 1980; Sojka 1985).



272
	

SOJKA

Basing RL prediction on ODR as the environ-
mental descriptor ties a dynamic response of
oxygen-consuming plants to an indicator of oxy-
gen supply-rate (Stolzy and Sojka 1984). The
desirability of relating respiration-linked plant
responses to rate factors rather than capacity or
intensity factors is well known. This approach
accounts for response lags associated with dis-

solved oxygen depletion from flooded soil. A
field study showed that 48 h of inundation were
required before enough oxygen was removed by
plant and microorganism respiration to lower
soil ODR to the stomatal closure threshold for
soybean (Oosterhuis et al. 1990a and b).

Using ODR also allows for response variations
to a given soil-oxygen regime (Fig. 1.) resulting

FIG. 1. Co-dependence of soil oxygen diffusion rate (ODR) on bulk density and matric tension for four soils,
described originally as (a) brown soil formed from loess, (b) black earth formed from loam, (c) very heavy
alluvial soil, and (d) chernozem rendzima. Dotted 35 and 70 ODR lines are flat cartesian projections of the
specified rate contours, whereas complete relationships over the measured range are presented as response
surfaces (adapted from Stepniewski 1980).



JOJOBA
a b

B

• 21°C 42.290 -0.585
• - - - - 27°C 68.932 -0.634
• — 33°C 115.815 -0.325

RL = a(ODR) b

Avg. R2 = 0.948

STOMATA AND AERATION
	

273

from the combined influence of oxygen concen-
tration, porosity, and water content (Agnew and
Carrow 1985a; Asady and Smucker 1989; Birkle
et al. 1962; Holder and Cary 1984; Wilson et al.
1985; Stepniewski 1980). With increased soil
temperature, ODR also accounts reasonably well
for oxygen's decreased solubility in water and
increased diffusion coefficients in rhizosphere
water and gas components. However, as Lux-
moore and Stolzy (1972) demonstrated (Fig. 2),
these combined and opposing physical effects
are outpaced by the change in metabolic demand
for oxygen with increasing temperature.

Sojka and Stolzy (1980) combined R L re-
sponses to a range of ODR's generated from
various soil temperature x oxygen concentration
combinations to describe a single R L x ODR
relationship in wheat. But using data of Reyes-
Manzanares (1975) for sunflower (Helianthus
annuus) and jojoba (Simondsia chinensis), each
soil temperature gave a separate 11, x ODR
relationship showing greater baseline stomatal
closure for each progressively higher tempera-
ture (Fig 3). Similar temperature-shifted re-
sponses have been reported by Grossnickle
(1987) for Spruce (Picea sp.) and by Donovan et
al. (1989) for bald cypress ( Taxodium disticnum)
and water tupelo (Nyssa aquatica). Using data
of Owen-Bartlett (1977), Sojka and Stolzy
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• 1.) )2 =0.2014 crn 2 sec
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o
5	 10	 15	 20	 25 30	 35 40°C

270	 280	 290	 300	 310

TEMPERATURE (K)

FIG. 2. Relative temperature-related changes in
diffusion corn root respiration rate (assuming respi-
ration rate doubles for each 10-K increase, i.e., Qlo =
2), diffusion coefficient (D) of 0 2 in air, and in water,
and 02 solubility coefficient in water (adapted from
Luxmoore and Stolzy 1972).
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FIG. 3. Temperature dependence of the leaf diffu-
sive resistance (RL) x soil oxygen diffusion rate (ODR)
relationship for (a) sunflower and (b) jojoba (adapted
from Sojka and Stolzy (1 980).

(1980) also found that plant age affected the
relationship in cotton (Gossypium sp).

During prolonged soil anoxia or flooding the
RL x ODR relationship eventually changes,
probably because of shifts to anaerobic meta-
bolic pathways, resulting in hormonal imbal-
ances and morphological adaptations. Gradual
recovery of R L over prolonged flooding episodes
is a common observation (Fig. 4). In the case of
agronomic and horticultural crops, however,
conditioning seldom occurs rapidly enough to
avoid catastrophic effects on crop yield and/or
quality. Depending on species or cultivar hy-
poxia tolerance, recovery even after cessation of
hypoxic conditions can take weeks and is seldom
complete. This situation is made worse by a
change in the base relationship between photo-
synthetic rate and R L (Fig. 5). Both Oosterhuis
et al. (1990a and b) and Vu and Yelenosky
(1991) showed that loss of plant photosynthetic
capacity was not merely a function of increased
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FIG. 5. Difference in the relationship between leaf
photosynthetic rate and leaf conductance for flooded
vs. non-flooded soybean (adapted from Oosterhuis et
al. 1990).

CONTROL r 2 =0.92

FLOODED r
2 

= 0.89

274	 SOJKA

300

100

a
Rab

70 • b
b

50

30 b b
b

10

N 300 - DD (0 DAYS) R ad
(5 DAYS)	 a

	 F2 (8 DAYS)
a..ab

100
a

(7)
w
0C

rn

70
50

30

b

• ,

a
a

D 10
11-
U-0 300 F1 RL

F2
FLOODING INTERVAL

100 a
70
50

b

b_ .a
30 a	 •

b 

10 	
25	 30	 35

	
40	 45

DAY OF YEAR

FIG. 4. Time-course of flooding effects on tomato
leaf diffusive resistance ( Rob = abaxial resistance,
Rad = adaxial resistance and R., = calculated parallel
resistance), well drained (DD), 5-day flooded (Fl), or
8-day flooded (F2) treatments, where flooding began
on day 28. Points with differing letters on a given date
in a given figure differ at P < 0.05 (adapted from
Karlen et al. 1983).

RL . Instead, a lower photosynthetic rate exists
for a given R. ', under root hypoxia compared with
well aerated soil.

PHYSIOLOGICAL CAUSES

Elevation of RL by root hypoxia is apparently
the result of several interactive mechanisms.
The dominance of any given mechanism varies
with species, specific environmental conditions,
plant growth stage, and duration and nature of
hypoxia. Although attention was focussed for
many years on a possible role of ethylene (Brad-
ford and Yang 1981; Bradford et al. 1982; Pallas
and Kays 1982; Aharoni 1978), and while ancil-
lary hormonal involvement may occur (Munns
and King 1988), the single mechanism that now

seems most ubiquitously implicated involves ac-
cumulation of abscisic acid (ABA) in leaves dur-
ing episodes of hypoxic root stress (Bradford
1983b; Jackson and Kowalewska 1983; Jackson
and Hall 1987; Jackson et al. 1988; Neuman and
Smit 1991; Shaybany and Martin 1977; Smit
et al. 1990; Zhang and Davies 1986, 1987). There
is, however, uncertainty about whether the ABA
always originates in the roots or in the leaves.

During flooding, ABA apparently acts as a
hormonal trigger of stomatal response. This is
consistent with ABA's effect in other stressed
systems (Jones and Mansfield 1972; Hiron and
Wright 1973; Wright 1977; Zeevaart and Creel-
man 1988), particularly those exhibiting lowered
plant water potentials. Examination of the stud-
ies cited in Table 1, as well as others (Schild-
wacht 1989; Wadman-van-Schravendijk and
van Andel 1985; Zhang and Davies 1986), shows
there is no consistent effect of root zone hypoxia
on plant water potential, although water poten-
tials are lowered in many instances. Increased
production of ABA in root systems may initially
contribute to lowering of plant water potentials
by reducing root hydraulic conductivity (Mark-
hart et al. 1979).

Aerenchyma formation (or increased root po-
rosity) proceeds as hypoxia initiates less effi-
cient anaerobic metabolic pathways in roots.
This shift results in destruction of easily metab-
olized root cellular components, ultimately cre-
ating an interconnected network of gas-filled
voids in the roots (Drew 1988). Abscisic acid has
been shown to act as an inhibitor of maize root
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aerenchyma formation (Konings and de Wolf
1984), which may act to prevent complete root
destruction through lysigenous air space for-
mation during anaerobic respiration. Adventi-
tious roots, which generally have high root po-
rosity and also help reduce flooding stresses
(Javier 1985), originate above the zone of oxygen
depletion.

Abscisic acid acts directly on stomatal control
by impairing guard cell accumulation and/or
retention of potassium ions (Mansfield and
Jones 1971) and by causing transient potassium
and chloride ion efflux (MacRobbie 1981). The
role of ABA accumulation in leaves in response
to drought stress has been widely researched
(Davies and Zhang 1991). Because of the inti-
mate involvement of potassium in guard cell
turgor regulation, it is important to note that
extensive reviews of plant nutritional response
to hypoxia have shown that leaf, root, and whole
plant potassium levels drop rapidly upon hy-
poxia in nearly all cases (Drew 1988; Sojka and
Stolzy 1988). Potassium deficiency alone can
impair stomatal opening of maize (Peaslee and
Moss 1966) and reduce sugarbeet root system
permeability to water (Graham and Ulrich
1972).

Nitrogen deficiency is also common in hy-
poxic plants, and its nutrition appears linked to
stomatal regulation through an effect on ABA
levels. Increased endogenous ABA was found at
high plant water potentials in N-deficient cotton
plants, resulting in greater stomatal sensitivity
to stress (Radin and Parker 1979; Radin and
Ackerson 1981; Radin 1981; Radin et al. 1982).
The effects of nitrogen nutrition on stomata
could not be explained by passive linkage to
plant water potential. Stomata closed at higher
plant water potential with nitrogen deficiency.
In another group of cotton experiments, N and
K concentrations fell in leaves after flooding
(Reicosky et al. 1985a and b; Hocking et al.
1985). The decline in nitrogen levels corre-
sponded to reduced growth and was associated
with elevated foliage temperatures and reduced
photosynthesis, which both implicate stomatal
closure.

RELEVANCE AND APPLICATION

Most of the species in Table 1 are trees or
woody herbaceous species, some of which are
horticultural crops. One is prompted to ponder
why so little attention has been paid to this

phenomenon for field crops. One reason may be
that as agriculture has developed worldwide, the
best, least flood-prone land was the first land
put into food and fiber crops, whereas more
flood-prone land has remained forested longer.

Kozlowski (1984) noted that in the U.S., over
10,000 floods have been documented. In Missis-
sippi alone, annual flooding can cover 1.6 million
ha. Thus, both flood numbers and extent of
flooding may rival the occurrence of serious
drought. Localized crop devastation from floods
is often associated with storms, many of which
go unrecorded as "official" flood events. In ad-
dition, poor soil aeration and perched or shallow
water tables occur frequently outside the context
of meteorological flooding. Fine textured soils,
potholes, internal drainage to footslopes, and
excess irrigation without adequate draining ex-
pand the scope of hypoxia. The experiences of
U.S. cornbelt farmers in the Spring of 1991 bore
witness to the calamitous consequences of hy-
poxic stresses and the lack of adequate strategies
for dealing with them. Where the previous year's
summer-long droughts had substantially re-
duced yields gradually over months, a week or
10 days of flooding in the spring of 1991 resulted
in crop failure for extensive areas.

Box (1986) demonstrated that prolonged pe-
riods of ODR sufficiently low to cause stomatal
closure in wheat is a common occurrence in the
wheat double-cropping region of the southeast-
ern U.S. and may be a major factor contributing
to the region's depressed yields. Scott et al.
(1989) demonstrated increased yield-loss sus-
ceptibility to flooding in field-grown soybean
stressed for fixed durations at progressively
more mature plant growth stages.

As Fig. 4 demonstrates, stomatal recovery
from hypoxia is usually slow and incomplete.
Flooding episodes represent significant periods
with little or no net photosynthetic gain and are
often associated with necrotic root pruning and
permanent root impairment, disease, or foliar
necrosis, leaving crops susceptible to damage
from subsequent stresses. Stomatal responses
are ultimately reflected in yield and/or quality
reductions.

A conceptual comparison of the effects on
yield potential of flooding vs. drought stress is
proposed in Fig. 6. Hypoxic stress can often
impact crop yield potential more perniciously
than drought stress. Drought-stressed crops usu-
ally accrue a slow linear reduction in yield po-
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FIG. 6. Conceptual comparison of stress accumu-
lation and stress relief effects on yield potential for
flooding stress vs. drought stress.

tential over the stress episode. If the crop is not
strongly determinate and if stress does not occur
at a critical growth stage, substantial recovery
of yield potential may result when water is again
available. Contrastingly, hypoxic stress, after a
brief lag associated with rhizosphere oxygen de-
pletion, usually results in rapid sharp reduction
of yield potential, generally with only gradual
and poor recovery of yield potential upon rein-
troduction of oxygen into the root zone.

Stomatal closure and recovery patterns under
hypoxia deserve greater attention in dynamic
crop modeling. Even the limited existing data
from field crops reviewed in this paper provide
significant insight. Critical model components
should include response lags associated with ini-
tial profile oxygen depletion, loss of photosyn-
thetic capacity, reduced root metabolic effi-
ciency, duration of hypoxia, root temperature,
plant age and growth stage effects, and gradual
recovery to near-normal functioning.

Interactions of these factors impinge on a
number of critical questions. The extent to
which onset of stomatal dysfunction during soil
hypoxia affects the temperature of well watered
canopies as a function of ambient vapor pressure
deficit has not been documented. Documenta-
tion of these effects may prove challenging be-
cause of the lack of correlation that is often
found between plant water potential and R L
during hypoxic episodes (Bradford 1983a; Brad-
ford and Hsiao 1982; Davies et al. 1987; Everard
and Drew 1989; Neuman and Smit 1991; Sojka
and Stolzy 1980). These relationships may be
affected by confounding hormonal controls of
stomatal movement, alteration of nutrient
fluxes to and from guard cells, or even diffusion

of elevated levels of CO 2 through roots of flooded
plants to leaves, affecting stomatal performance.

Stomatal measurements in field crop manage-
ment studies targeting potentially hypoxic soil
environments might provide a sensitive indica-
tor of stress. Preliminary studies may be re-
quired to determine the extent to which prob-
lems surrounding measurements of R, (Idso et
al. 1988, 1989; Monteith 1990) are diminished
or exacerbated with stomatal closure in response
to stimuli other than drought. Stomatal moni-
toring could provide an excellent physiological
diagnoses of occurrence, severity, and duration
of oxygen stress episodes.

As in dealing with all other environmental
stresses, breeding for resistant crops would prob-
ably provide a potent problem solution. Meas-
urement of leaf diffusive resistance or its recip-
rocal, leaf conductance, in controlled hypoxic
environments provides sensitive comparisons of
species stress resistance; conceivably, this ap-
proach could be used for cultivar comparisons
as well. In this vein, research is warranted to
determine the degree of correlation between root
aerenchyma formation and recovery of stomatal
function.
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