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Abstract

Amplicon length heterogeneity PCR (LH-PCR) was investigated for its ability to
distinguish between microbial community patterns from the same soil type under
different land management practices. Natural sagebrush and irrigated mould-
board-ploughed soils from Idaho were queried as to which hypervariable domains,
or combinations of 16S rRNA gene domains, were the best molecular markers.
Using standard ecological indices to measure richness, diversity and evenness, the
combination of three domains, V1, V3 and V1 +V2, or the combined V1 and V3
domains were the markers that could best distinguish the undisturbed natural
sagebrush communities from the mouldboard-ploughed microbial communities.
Bray–Curtis similarity and multidimensional scaling were found to be better
metrics to ordinate and cluster the LH-PCR community profiling data. The use/
misuse of traditional ecological indices such as diversity and evenness to study
microbial community profiles will remain a major point to consider when
performing metagenomic studies.

Introduction
Molecular microbial ecologists often use DNA profiling
techniques and the prokaryotic ribosomal genes as phyloge-
netic markers to assess community structural 'diversity'
quickly (Torsvik et al., 1996; Hill et al., 2003). Among the
various molecular profiling techniques (Diez et al., 2001;
Fennell et al., 2004), amplicon length heterogeneity PCR
(LH-PCR) is a method that queries the hypervariable
domains of the 16S rRNA genes to identify structural
patterns in microbial communities (Suzuki et al., 1998;
Bernhard & Field, 2000; Litchfield & Gillevet, 2002; Mills
et al., 2003; Tiirola et al., 2003; Bernhard et al., 2005). In
addition, the data are phylogenetically relevant in that the
amplicon lengths (i.e. the natural length variation within
sequences) generated can be directly associated with specific
taxonomic sequences archived in the databases using com-
mon sequence alignment and analysis tools (Suzuki et al.,

1998; Crosby & Criddle, 2003).
Once a community pattern is obtained, microbial ecolo-

gists have often analysed the data using traditional ecologi-
cal indices (Watve & Gangal, 1996; Dunbar et al., 2000;

Osborn et al., 2000; Hill et al., 2003). These indices are based
on the clear definition and ecological description of an
individual species, an entity that is often difficult to define
in microbiology (Istock et al., 1996; Watve & Gangal, 1996;
Hughes et al., 2001). Thus, microbial ecologists are often
faced with the dilemma of deciding if these traditional
indices, designed for discrete macro-community analyses,
are appropriate measures to apply to microbial community
profiles.

This study investigated soil bacterial communities using
LH-PCR molecular profiling. Previous studies have shown
that soil type and its inherent resources determine microbial
community structure (Zhou et al., 2002), and that soil
degradation or manipulation (e.g. mouldboard ploughing)
can negatively impact soil biodiversity (Girvan et al., 2003).
The objectives of this study were: (1) to interrogate three of
the nine hypervariable domains of the bacterial small
ribosomal subunit (16S rRNA) genes using LH-PCR; (2) to
assess which domain or combination of domains provides
the highest discrimination; and (3) to compare the tradi-
tional ecological indices of richness, diversity and evenness
to non-metric multidimensional scaling in the study of
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microbial communities. To date, LH-PCR studies (Suzuki
et al., 1998; Bernhard & Field, 2000; Mills, 2000; Ritchie
et al., 2000; Tiirola et al., 2002; Bernhard et al., 2005) have
used only the first two or three hypervariable regions of the
16S rRNA genes. In addition to amplifying two hypervari-
able domains inclusively (V1+V2), we utilized two other
sets of universal primers to amplify the hypervariable
domains Vland V3 exclusively. Therefore each combined
profile was a concatenation of data obtained using different
pairs of primers on the same samples.

Materials and methods

Soil samples
Soil samples were collected at the USDA Agricultural
Research Service's Northwest Irrigation and Soils Research
Laboratory, Kimberly, ID. All sites are classified as a tempe-
rate high, semidesert ecosystem. Soil on all sites has been
classified as a coarse-silty, mixed, superactive, mesic dur-
inodic xeric haplocalcid, with 0.1-0.21 grams of clay per
gram of soil clay and 0.6-0.75 grams of silt per gram of soil
silt, and organic matter of approximately 13 g per kg of soil.
The soil had a pH of 7.6-8.0. Plots were 30 m x 30 m and the
experiments were arranged in a completely randomized
design. Soil samples were taken in triplicate at various
depths (0-5 cm, 5-15 cm and 15-30 cm) from three native
sagebrush (NSB) sites and three irrigated agricultural crop-
land sites under mouldboard ploughing systems (IMP)
(depth: 0-30 cm). All samples were transported on ice to
the laboratory, where they were homogenized, and aliquots
frozen at — 80 °C until processed for molecular analysis.

DNA extraction, quantification and LH-PCR
Five hundred milligrams of homogenized soil samples
were extracted in triplicate using the Qbiogene BIO 101
FastPrep® instrument and FastDNA® SPIN kit for soil
(QBiogene, Irvine, CA) with slight modifications to the
manufacturer's protocols previously described (see Mills
et al., 2003). The metagenomic DNA was quantified using a
Hoefer DNA Quant fluorometer (Hoefer, San Francisco,
CA) and diluted to 10 ng 4-1 working stocks.

For the LH-PCR reactions only the forward primer of
each set was labelled with a fluorescent dye. Primers for the
V1 domain were P 1F_6-FAM 5' GCG GCG TGC CTA ATA
CAT GC 3'; P1R 5' TTC CCC ACG CGT TAC TCA CC 3';
and for the V3 domain were 338F_HEX 5' ACT CCT ACG
GGA GGC AGC AG 3' (Cocolin et al., 2001). The V1 +V2
domain primers were 27F_6-FAM 5' AGA GTT TGA TCM
TGG CTC AG 3'; 355R 5' GCT GCC TCC CGT AGG AGT 3'
(Suzuki et al., 1998). Final concentrations for all PCR
reaction mixes were: 1 x PCR buffer, 2.5 mM MgC12,
0.25 mM each dNTP (Promega, Madison, WI), 0.5

forward and reverse primers (Invitrogen Life Technologies,
Carlsbad, CA) 0.25 U AmpliTaq Gold ® DNA polymerase
(Applied Biosystems, Foster City, CA), 0.1% (weight in
volume) bovine serum albumin [BSA, fraction V, non-
acetylated (Fisher Scientific, Pittsburgh, PA)], 10 ng of
genomic DNA and DEPC-treated water (Sigma, St Louis,
MO) to a final volume of 20 The MJ DNA Engine PTC-
200 programmable thermocycler (MJ Research, Waltham,
MA) was used and PCR cycling conditions were as follows:
one initial denaturing step of 95 °C for 11 min followed by
25 cycles of 95 °C for 1 min, annealing at 55 °C for 1 min,
and extension at 72 °C for 1 min. The final extension step
was for 72 °C for 10 min. These parameters had been
previously optimized (see Mills et al., 2003) so as to
minimize any PCR template or kinetic biases that are
inherent to PCR and amplification of metagenomic DNA
samples (Suzuki & Giovannoni, 1996; Suzuki et al., 1998).

Electrophoresis
A master mix of a 5 : 2 :1 ratio of deionized formamide (98%,
Sigma), ABI Blue Dextran-EDTA loading dye and ABI
GeneScanTM 500 ROX internal standard (Applied Biosys-
tems) was used to denature LH-PCR products before loading
on the ABI 377 genetic analyser (Applied Biosystems). The
3 : 2 mixture of loading buffer to PCR product was denatured
at 95 °C for 4 min, snap-cooled, and held on ice until loading
0.75 of product onto a 36-inch well-to-read (WTR) 5%
long-range polyacrylamide gel (FMC, Philadelphia, PA).
Standard run conditions, using Filter D were used for a
3.5-h run. GeneScan® and Genotyper® software (Applied
Biosystems) were used to collect and analyse the data.

Binning and analysis
Binning and normalization were performed in order to
eliminate errors that are inherent to the collection and
analysis software (see Mills et al., 2003). Raw data for each
subplot and domain(s) were averaged and the relative ratios
of peak heights (intensities) were calculated by dividing each
individual peak height in each electropherogram by the total
intensity. The mean relative ratios were used in all subse-
quent analyses as described in (Dunbar et al., 1999) and for
the multidimensional-scaling (MDS) plots. The traditional
ecological indices used were
(1) Shannon	 = — Ep, (lnp,), where p, is the propor-

information	 tion of the individuals in the ith species.
index

(2) Evenness	 E = H'/Hmax where Hrnax =1n (S), where S
index	 is the richness or number of amplicons.

ANOVAS were used to compare ecological indices among
the four groups (SPSS ver. 13.0, SPSS Inc., Chicago, IL).
When significant differences were observed, Bonferonni
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Table 1. Richness, diversity and evenness mean indices based on single hypervariable domains of the 16S rRNA genes for natural sagebrush (NSB) soil
at three depths and irrigated mouldboard-ploughed (IMP) soils at 0-30 cm

Sample Richness (S) Diversity (H) Evenness (E)

V1 domain
NSB 0-5 cm 10.78 (± 1.30)e 1.90 (± 0.11)` 0.80 (± 0.03)f
NSB 5-15cm 12.44(±1.51)b 2.09 (± 0.11)d 0.83 (±0.03)±'9

NSB 15-30cm 11.78 (±0.67)e.h 2.11 ( ± 0.09)d 0.86 (± 0.03)9
IMP 0-30 cm 10.44 (± 0.72)a 1.65 (± - 0.09)e 0.70 (± 0.03)h
ANOVA F=6.13, P < 0.01 F=37.81, P < 0.01 F =38.63, P < 0.01
V1+V2 domains
NSB 0-5 cm 7.11 (± 1.05) i 1.76 (±0.12)k 0.90 (±0.04)"
NSB 5-15cm 11.33 (±2.17)i 2.28 (±0.19)' 0.95 (± 0.02)°
NSB 15-30cm 9.89 (± 1.69)i 2.14 (±0.14)1 0.94 (±0.03)" .°
IMP 0-30 cm 9.56 (±0.72) 1 2.03 (±0.10)" 0.90 (±0.03)"
ANOVA F=11.96, P < 0.01 F=21.97, P < 0.01 F=6.39, P < 0.01
V3 domain
NSB 0-5 cm 4.57 (±1.13)g 1.18 (±0.24)` 0.81 (±0.10)5
NSB 5-15cm 3.00 (±0.00)4 1.01 (± 0.02)f 0.92 (±0.02)t
NSB 15-30cm 3.67 (±0.50)g•4 1.12 (±0.11)f 0.87 (±0.06)5't
IMP 0-30 cm 4.44 (±0.52)g 1.36 (±0.14)f 0.91 (±0.02)t
ANOVA F=7.31, P < 0.01 F=6.88, P < 0.01 F=4.91, P < 0.01

Richness (5)= no. of peaks in each sample; diversity (H)= -E(m)In(m), where This the relative ratio of individual peak heights; evenness (E)= HIHma„,
where Hmax =ln(5); numbers in parentheses are ± SD of the calculated means (n = 9). Within each domain set, indices followed by the same letter are
not significantly different from each other using Bonferroni post-hoc comparisons, P < 0.05.

post-hoc comparisons were performed and all confidence
intervals were set at 95%.

The ratio data were imported into Primer 5 (Primer-E,
Ltd, http://www.primer-e.com) and square-root-trans-
formed, and Bray-Curtis similarity matrices were calculated
using
(3) Bray-Curtis	 Cz=2w/(a+b), where a is the sum of

similarity abundances of all amplicons found in a
given sample; b is the sum of amplicon
abundances in another sample; and w is
the sum of the lower of the abundance
values for each amplicon common to
both samples (Pohle & Thomas, 2001).

To visualize similarity among samples, non-metric MDS
was employed using the Bray-Curtis similarity matrix.
Analysis of similarity (ANOSIM) was performed for com-
parisons of similarity between groups, and similarity per-
centage (SIMPER) analysis was used to determine which
amplicons were responsible for discriminating between
treatments.

For calculating the concatenated profiles, the hypervari-
able-domain raw data were realigned, combined and treated
as one data set in various domain combinations. Relative
ratios and binning were recalculated for each analysis, as
described above in order for the total intensity to equal one;
the relative ratios for each peak changed because the sum of
the total intensities of the combined domains changed
depending on the domains queried. Peaks that fell below

0.01 when combined with another data set were eliminated.
Thus, with some domain combinations, there was an
attenuation of the number of data points used in the
analysis.

Results and discussion

Ecological indices and LH-PCR domains

Ecological indices were calculated for each separate domain
profile, i.e. V1, V1 +V2, and V3 hypervariable domains
(Table 1). There was significant variation among groups in
all domains (see ANOVA results, Table 1). Using only the V1
domain data, diversity and evenness for the NSB samples at
all depths were significantly different from those of the IMP
samples (here and subsequently in this section, 'significant
differences' between treatments refers to P < 0.05 for Bon-
ferroni post-hoc comparisons). For V1 +V2 data, NSB 5-15
and NSB 15-30 were not significantly different when
compared with each other but were distinct when compared
with the other samples. When querying the V3 domain, the
diversity indices were not significant.

The three data sets, V1, V3 and V1 +V2, were combined
and the indices recalculated (Table 2). IMP was significantly
different from NSB 5-15 and NSB 15-30 with respect to
diversity. All NSB sample evenness indices were not signifi-
cantly different from each other, but IMP was significantly
different from NSB 15-30. Indices were then recalculated
using only two domains. For the combined V1 and V3
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Table 2. The richness, diversity, and evenness mean values for various combinations of the domain data sets produced using amplicon length
heterogeneity PCR profiling

Sample Richness (S) Diversity (H) Evenness (E)

V1, V3, and V1+V2 domains
NSB 0-5 cm 20.33 (	 1.15)8' 1' 2.40 (±0.05) • 0.80 (± 0.01)f
NSB 5-15cm 25.67 (±3.78)ab 2.63 (±0.18)c 0.81 (± 0.04)f
NSB 15-30 cm 24.67( ± 0.57)&1' 2.68 (	 0.12)e 0.84 (± 0.03)f
IMP 0-30 cm 19.33 (	 1.52)a 2.26 (±0.11) • 0.76 (± 0.02)f.9
ANOVA F=6.42, P < 0 .02 F= 7.52, P < 0.01 F= 4.63, P < 0.04
V1, V3 domains
NSB 0-5 cm 12.89 (± 1.76)h 2.03 (	 0.14)U 0.80 (±0.04) 1
NSB 5-15cm 14.11 (	 2.31)h 2.16 (	 0.12)U 0.82 (±0.03) 1
NSB 15-30 cm 14.78 (	 0.83)h 2.25 (±0.10)' 0.83 (±0.03) 1
IMP 0-30 cm 14.00 (	 0.50)h 1.85 (	 0.07)k 0.70 (± 0.03)m
ANOVA F=2.34, P< 0.09 F=21.52, P < 0.01 F=28.58, P < 0.01
V1, V1+V2 domains
NSB 0-5 cm 17.67 (±1.80)" 2.32 (	 0.08)P 0.81(± 0.02)5
NSB 5-15cm 21.89 (±2.14)0 2.52 (±0.15)4 0.81(± 0.03)5
NSB 15-30 cm 18.33(±1.11)" 2.33 (	 0.08)P 0.80 (±0.02)5
IMP 0-30 cm 18.89 (±0.92)" 2.13 (±0.09) ` 0.73 (± 0.03)t
ANOVA F= 12.55, P< 0.01 F= 19 .11, P < 0 .01 F= 22.25, P < 0.01

V1 +V2, V3 domains
NSB 0-5 cm 9.33 (	 0.57)u 2.10 (±0.03)w 0.94 (± 0.01)Y
NSB 5-15cm 15.67 (	 3.05)v 2.51 (±0.27)w•x 0.91 (± 0.05)Y
NSB 15-30 cm 12.67 (±0.57 • 2.44 (±0.08)'"•" 0.96 (± 0.02)Y
IMP 0-30 cm 15.00 (±0.00)" 2.56 (±0.01)" 0.95 (± 0.01)Y
ANOVA F=9.82, P < 0.01 F=6.21, P < 0.02 F=1.79, P < 0.23

Richness (S) = no. of peaks in each sample; diversity (H)= -E(m)In(m), where This the relative ratio of individual peak heights; evenness (E)= HIHmax

where Hmax =ln(S); numbers in parentheses are ± SD of the calculated means (n=9). Within each domain set, indices followed by the same letter are
not significantly different from each other using Bonferroni post-hoc comparisons, P < 0.05.

domains, there were no significant differences in richness
between samples, but IMP diversity and evenness were
significantly different from all NSB samples. The same was
true for the V1, V1 +V2 data set. When V3 and V1 +V2 were
combined IMP was not significantly different from NSB 5-15
or NSB 15-30; IMP was, however, significantly different from
NSB 0-5. Evenness did not differ between any of the samples.

Multidimensional scaling

Multidimensional scaling tightly clustered the NSB samples
apart from IMP with V1 and the three-domain data (Figs la
and le). Similarly, distinct NSB and IMP groups were
present with V1 and V3 combined data (Fig. 1d). The V1
and V3 data also indicated the subtle differences related to
depth. The V1 +V2 or V3 domain data were able to
distinguish NSB from IMP samples but the clustering was
not as pronounced. All other domain combinations fol-
lowed the same MDS clustering trend as the V1 and V3 data,
with only slight variations in the spacing of the clusters
within the three different depth NSB groups (data not
shown).

ANOSIM is a measure of the dissimilarity of a priori
defined groups. Global R-values near zero indicate no

difference among groups, and R= 1 or near one indicates
that samples within groups are more similar to each other
than samples from different groups. In this study, the global
R-values for NSB groups compared with IMP for any
combination of domains was R > 0.80, P < 0.001, indicat-
ing that NSB always grouped distinctly from IMP. SIMPER
analysis of the combined V1 and V3 domains (Table 3)
shows the major amplicons that contributed to the dissim-
ilarity among the soil groups. How consistently an amplicon
was able to differentiate among the groups were indicated by
the ratio of the average dissimilarity to the standard devia-
tion (Dis:SD). A large ratio indicates that the amplicon
consistently and substantially contributed to the differences
between LH-PCR profiles.

Choice of diversity measures and hypervariable
domains

A study by Hill et al. (2003) addressed the issue of the
suitability of ecological indices for microbial ecology stu-
dies. This report included a comprehensive review of the
index selection issue using microbial community clone
libraries and concluded that the Shannon index appeared
to be more sensitive to overall community change and the
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Fig. 1. Multidimensional scaling of (a) V1
domain, (b) V1 +V2 domain, (c) V3 domain,
(d) V1 and V3 domains combined, and (e) the
concatenation of three hypervariable domains,
V1, V1 +V2 and V3. A represents NSB 0-5 cm;
V represents NSB 5-15 cm; q represents NSB
15-30 cm; and n represents IMP 0-30 cm.

loss of rare populations than did the Simpson dominance
index (Hill et al., 2003). Since LH-PCR profiles reflect a
combination of dominant and rare data points, the Shannon
index was selected to measure diversity.

Unlike large clone libraries, however, microbial commu-
nity profiles generated by any profiling method, including
LH-PCR, only represent the minimum detectable diversity.
When any of the (two or three) domain data were combined,
NSB samples had higher diversity than IMP, but within
NSB, based on depth, in general the indices did not
significantly differ. The individual domain data did not,
however, support this trend, and the interpretation differed
depending on the domain queried. Careful consideration
when selecting both which hypervariable domain(s) to
query and which indices to use, with respect to their
suitability and limitations, is required if diversity measures
are to be applied appropriately to LH-PCR community
profiles.

Other microbial ecology studies have addressed the issue
of diversity using other molecular techniques and these
same ecological indices. Dunbar et al. (2000) concluded in
their soil study using terminal restriction fragment length
polymorphism (TRFLP) analyses that the use of multiple
restriction enzymes to generate community patterns did not

necessarily increase the overall resolution of diversity. In-
stead, multiple digests were used to increase the confidence
that similarities between samples were not a result of
technical biases that may come from using only one enzyme
(Dunbar et al., 1999). In addition, diversity indices were
calculated individually for each enzymatic pattern. They
observed that diversity indices varied based on the restric-
tion enzyme used. Likewise, in our study, the choice of
domain queried had implications for diversity measures.
Unlike Dunbar, we observed an increase in discrimination of
diversity using the combined domain data.

Similarity and MDS

Patterning the similarity/dissimilarity of the community
proved to be more informative than the traditional ecologi-
cal indices in discriminating treatment groups. Bray—Curtis
similarity is used principally with continuous numerical
data and species abundance data similar to those generated
by LH-PCR profiling (Gotelli & Elision, 2004). Clearly, in
this study, the Bray—Curtis similarity and subsequent MDS
ordinations strongly reflected between site dissimilarities.
The advantage of using Bray—Curtis similarity over other
similarity indices based on presence/absence calculations
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Table 3. The major amplicons ( > 50% contribution) responsible for the dissimilarity among soil groups for the V1 and V3 combined domain data.
Column headings are Dis: averaged dissimilarity between paired soil groups; BP: amplicon length in base pairs; Ail,: average abundance of the amplicon
for group 1; Ab2 : average abundance of the amplicon for group 2; BP Dis : amplicon-specific contribution to the average dissimilarity; Dis:SD: ratio of the
amplicon's contribution to dissimilarity divided by the standard deviation of the contribution to dissimilarity among groups; % Con: % of the average
dissimilarity due to the amplicon; % Cum: the cumulative contribution of the amplicons to the dissimilarity among groups

Soil Groups
	 Dis	 BP

	
Ab1	 Ab2
	

BPDis	 Dis:SD
	

%Con	 %Cum

NSB0-5:NSB5-15

NSB0-5:NSB15-30

NSB5-15:NSB15-30

NSBO-5:IMPO-30

NSB5-15:IMPO-30

NSB15-30:IMPO-30

	

27.13	 83	 0.00	 0.02	 2.14	 5.11	 7.88	 7.88
73	 0.02	 0.00	 2.04	 3.69	 7.51	 15.39
74	 0.32	 0.20	 1.74	 5.98	 6.40	 21.79
86	 0.13	 0.22	 1.63	 1.75	 6.00	 27.79
88	 0.02	 0.06	 1.59	 1.64	 5.84	 33.63
85	 0.04	 0.00	 1.58	 0.67	 5.81	 39.44
93	 0.01	 0.03	 1.36	 1.42	 5.00	 44.44
91	 0.01	 0.02	 1.29	 1.75	 4.75	 49.19

	

19.64	 90	 0.00	 0.04	 2.34	 3.60	 8.65	 8.65
88	 0.02	 0.08	 2.25	 4.23	 8.31	 16.96
73	 0.02	 0.00	 2.00	 3.70	 7.40	 24.36
80	 0.02	 0.00	 1.87	 13.79	 6.89	 31.25
74	 0.32	 0.19	 1.78	 3.49	 6.56	 37.81
85	 0.04	 0.00	 1.55	 0.67	 5.73	 43.54
93	 0.01	 0.03	 1.43	 1.50	 5.26	 48.80

	

19.64	 90	 0.00	 0.04	 2.85	 17.65	 14.53	 14.53
83	 0.02	 0.00	 2.17	 5.12	 11.03	 25.56
94	 0.04	 0.02	 1.49	 1.24	 7.60	 33.16
80	 0.01	 0.00	 1.33	 4.72	 6.76	 39.92

174	 0.00	 0.01	 1.21	 4.00	 6.17	 46.09

	

42.16	 85	 0.04	 0.27	 5.78	 2.28	 13.72	 13.72
86	 0.13	 0.00	 5.12	 5.80	 12.14	 25.86
84	 0.12	 0.00	 4.81	 3.45	 11.41	 37.26
76	 0.05	 0.00	 3.23	 33.82	 7.67	 44.93
78	 0.03	 0.00	 2.28	 7.39	 5.41	 50.34

	

52.49	 85	 0.00	 0.27	 7.65	 19.03	 14.57	 14.57
86	 0.22	 0.00	 7.02	 19.87	 13.37	 27.94
84	 0.17	 0.00	 6.20	 17.07	 11.81	 39.75
73	 0.00	 0.06	 3.45	 4.06	 6.58	 46.33

	

45.73	 85	 0.00	 0.27	 7.52	 19.57	 16.45	 16.45
86	 0.17	 0.00	 5.97	 11.95	 13.07	 29.51
84	 0.14	 0.00	 5.44	 6.97	 11.90	 41.42
73	 0.00	 0.06	 3.39	 4.07	 7.42	 48.84

and/or Euclidean distances is that there is less bias intro-
duced by shared absences of amplicons (Gotelli & Elision,
2004). The intrinsic importance of both dominant and rare
community members within the community can still be
reflected using this similarity index and ordination method.

In a recent study by Bernhard et al. (2005), LH-PCR data
patterned the microbial communities across a salinity
gradient. Using MDS, these authors were able to discrimi-
nate clearly between the bacterial communities associated
with fresh water and those in estuarine and marine waters.
These different aquatic systems drive both physiological and
habitat adaptation, and were reflected in structural changes
(i.e. amplicons) in the microbial communities. The present
study differs from Bernhard's in that the same soil ecosystem
(no physiological gradient per se) was being studied, and
disturbance and depth were assumed to be the ecological

drivers. It has been shown previously that microbial diver-
sity changes, and is often lower with cropping, land manage-
ment and use (Ibekwe et al., 2002) and with depth (Blume
et al., 2002). Even though similar micro organisms were no
doubt associated within a given Idaho soil type, LH-PCR
and MDS analysis were better able to pattern the subtle
community differences associated with disturbance and
somewhat with depth. MDS strongly supported the cluster-
ing of the samples based on tillage. However, the discrimi-
natory pattern produced was also a function of which
domains were queried. Even though the diversity indices
seemed to need only two domains (i.e. VI combined with
V3) to discriminate adequately between samples, the more
robust scaling output was reflected with either the VI or the
three-domain data. However, VI and V3 data were able to
differentiate NSB from IMP samples and also to identify
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differences associated with depth in the NSB soil groups.
Herein lies the paradox of choosing which domains and
measures better represent community structural differences.

Conclusions
Univariate measures such as Shannon's information index
and its associated evenness index appear to be more appro-
priate measures for community clone libraries since indivi-
dual bacterial identification can be ascertained through
sequencing (Wintzingerode et al., 1997; Hill et al., 2002).
Multivariate and ordination measures such as Bray–Curtis
similarity and MDS that use iterative procedures to map the
similarity (or dissimilarity) produced by profiling were
better measures to apply to this study. ANOSIM can test
for differences between multivariate groups, and SIMPER
analyses can rank the amplicons contributing the most to
the dissimilarities. Because of the inherently lower resolu-
tion provided by any molecular profiling method, dynamic
patterning of microbial communities can best be analysed
using these nonparametric, multivariate methods.

The evolution of profiling techniques over the last few
years has moved from publishing only the raw data (electro-
pherograms or gels) to applying traditional ecological analy-
ses to profiling data and now to using multivariate analyses.
Perhaps the greatest challenge facing microbial ecologists
will be to break away from the traditional ecological para-
digms of diversity measures and resolve the paradox by
developing new algorithms or unique metrics that will
better analyse the complexities still hidden within microbial
communities.
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