ESTIMATING EVAPORATION FROM INSOLATION^a

Discussion by Marvin E. Jensen

MARVIN E. JENSEN,³¹ M. ASCE. —The writer indicated that the ratio Q_e/Q_s was correlated with plant growth by Jensen and Haise⁴ and with air temperature by Stephens and Stewart.⁵ The paper by Jensen and Haise⁴ that was cited by the writer presented only part of the results obtained in the study completed during the summer of 1962. In their study, Jensen and Haise also correlated Q_e/Q_s for crops having a full vegetative canopy and adequate soil moisture with mean air temperature. The Q_e data were obtained from irrigated crops in several states in the western United States. They obtained the relation

in which $(Q_e/Q_S)_p$ represents the potential ratio, and T is the mean air temperature, in degrees Fahrenheit. In Eq. 23 Q_S is expressed as the evaporation equivalent of solar radiation assuming a constant heat of vaporization (1 gram water = 590 calories), thus Q_e and Q_S have the same dimensions. The paper Jensen and Haise summarizing the results of the completed study is available.³²

If a constant heat of vaporization is assumed, and Q_S is the total solar radiation for the month instead of the mean daily value (E is the total for the month), Eq. 4 becomes

$$\frac{E}{Q_{g}} = 0.013 \,\overline{T}_{a} = 0.26 \,\dots \,(24)$$

which is similar to the potential obtained by Jensen and Haise.

¹⁷ Carberry, J. J., and Bretton, R. H., "Axial Dispersion of Mass in Flow Through Fixed Beds," Journal of the American Institute of Chemical Engineers, Vol. 4, No. 3, September, 1958, pp. 367-375.

^a September, 1964, by Robert K. Lane (Proc. Paper 4025).

³¹ Research Investigation Leader, Water Mgt., Northwest Branch, Soil and Water Conservation Research Div., Agric., Research Service, U. S. Dept. of Agric., Kimberly (Twin Falls), Idaho.