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Irreversible Thermodynamics for Stress, Strain and
Other Soil Physical Property DescriptirfisTEF1

R
HEOLOGIC models used to de-
scribe the mechanical behavior of

soil have recently been reviewed and
summarized in detail by Scott and Ko
(1969). Their review (274 references) is
a "state of the art" report which de-
scribes theoretical and experimental ap-
plication to soils of rate process theory,
granular models, and the continuum
models of elasticity, plasticity, and vis-
coelasticity. Applications of the various
models were primarily for engineering
rather than agricultural purposes. Con-
tinuum models have received far more
intensive recent application than granu-
lar models. Also, the application of rate
process theory to soils has intensified
with attempts to link particle surface
properties to macroscopic soil stress-
-strain behavior. One subject area with
nearly a complete Lack of information
was the effect of temperature on soil
stress-strain properties.

The materials on which models have
been tested were almost exclusively
either clean sand or clay. Dry or totally
saturated samples were generally used.
The relatively small amount of work
that was reported on unsaturated soil
materials containing mixed particle sizes
indicated difficulties were encountered
obtaining reliable measurements from
such samples.

Since all agricultural soils fall within
the category of mixed particle size and
are unsaturated when their stress-strain
behavior is of most concern, they will
apparently be most difficult to describe
accurately with a stress-strain theory. A
very flexible and possibly complex
theory will be required to explain the
behavior of agricultural soils.

One of the most general theoretical
tools available presently is irreversible
thermodynamics. M. A. Biot* in a series
of 25 or more technical papers and a
textbook, Biot (1965), has applied this
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theory to geologic and soils problems.
The resulting stress-strain equations are
equivalent to those obtained with gen-
eral viscoelastic theory with the excep-
tion that irreversible thermodynamics
allows for interactions between normal-
ly independent variables. Such interac-
tions do not appear in classical viscoelas-
tic theory.

Since there are major interactions
between quantities in soil (stress-strain
relationships and water content; water
flow and heat flow; water conductivity
and porosity or bulk density; salt con-
tent, water conductivity, and most like-
ly stress-strain relationships) a theory
which allows for such interactions
would seem most appropriate. Taylor
(1963) has applied irreversible therm-
odynamics to soil and biological systems
with a different approach than Biot
(1965). Instead of working from the
most general possible case as Biot does,
Taylor (1963) develops the theory from
specific examples and works toward
more complex cases. Such an approach
aids the understanding of the origin and
significance of the interaction terms for
most readers. Taylor's text provides
good supplemental information to Biot
(1965) for anyone attempting to use
irreversible thermodynamics in agricul-
ture. The following reproduction of
some of the thermodynamic relation-
ships developed by Biot is presented to
illustrate the possible application of the
theory to soil stress-strain behavior and
general description of soil physical prop-
erties and to point out some of the
advantages and disadvantages of the
theory.

THEORY REVIEW

The starting point for the thermody-
namic approach is a very general iso-
lated thermodynamic system, Biot
(1954, 1955b, 1956a, 1958). V is de-
fined as the generalized free energy of
that system. A force Qi is defined by
equation [1]. The symbols i and j are
indexing variables which take on integer

	

values of 1 or greater 	
av

Qi 	
aqi

A conjugate coordinate of Q 1 , qi is

defined such that the product Q iqi has
the units of energy. Some examples of
what Qi and qi can be are electromotive
force and amount of electric charge
flowing, chemical potential and mass of
atomic species present, pressure and
volume, and stress and strain.

The thermodynamic system under
consideration is linear. This requires
both qi and the time derivative of qi to
be linear functions of Qi . Equations [2]
and [3] express this linearity with the
constants ai and bi .

Qi

clq,	.

dt	 bkcii

Notice in equation [3] the raised dot (')
notation for the time derivative.

If one utilizes the thermodynamic
equation including temperature (T) and
entropy (S e ), equation [4] for the

TSe = — V + Z Qiq. 	  [4]

description of a general thermodynamic
system and combines with it Onsagers'
reciprocal relations (DeGroot and Mazur
1962), an expression called the dissipa-
tion function (D) given in equation [5]
can be defined. By introducing equation
[5] into equation [4], equation [6]
may be obtained.

1
D	 bit qi qj 	

2	 i

Equation [6] is the general thermody-
namic equation describing a system with
forces acting on it and energy being lost
in it. The dissipation function includes
the terms that lead to the Loss of energy
within the system,

av	 aD
-

aqi 	 a q  Qi

A slightly more common form of this
equation is shown by equation [7].

	

a .	 +	 bj,	 = Q., 	  (7]

	

ifq	(
'

Equation [8]	 may be an even more
familiar form. It may be the equation

dY
C — + KY = F 	

dt
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describing a spring and dashpot in
parallel or a resistor and capacitor con-
nected in series. Constants K and C are
for a spring and dashpot, respectively. Y
is movement if one end of the model
with the other end stationary and F is
applied force. Although the basic form
of equation 6 is a simple one, it may be
used to describe complex phenomena
because of the large number of terms in
it.

To obtain solutions to this equation
the operator notation of

Ali	 + pbo 	 1 9 ]

equation [9] is used to solve equation
[10], The operator symbol for the time
derivative is p. Equation [10] is identi-
cal to equation [6] with Q i = 0.

	

E A..q.	 = 0 	  [10]

p is considered as a parameter of the
homogenous equation [10], an eigen-
value problem results. For each root —
Xs there is a solution of the form of
equation [11] which is called a relaxa-
tion mode. The superscript (s) in equa-
tions [11], [12], and [13] and follow-
ing equations is not to be interpreted as
an exponent. The superscript (s) is an
indexing variable, as are i and j. The
terms cbj (s) represent constants.

	

(s) =	 E es/ e-x st

S	 3

For infinite roots, the solutions take on
the form of equation [12] .

or) 	  
[12]

For zero roots the solution takes on the
form of equation [13].

(0)	 A(0).
'Pt
	 [13]

	

Equation	 [12] represents pure elastic
behavior, while equation [13] repre-
sents pure viscous behavior and equa-
tion [11] represents a combination of
the two.

It should be pointed out that no
specification has been made as to the
nature of parameters that are	 being
described by these thermodynamic
equations. Only that the product Qiqi
must have units of energy,

In order to simplify solving equations
where Qi is not equal to 0, equation [6]
may be normalized.

o-2) or-)i 

[14]

The solution of the normalized equation
is algebraic, and the transformation of
the normalized coordinates back to qi
and Qi results in equation [14] .

Equation [6] may also be solved for
Qi in terms of qv For media that must
be represented by a large number of
roots, summation signs may be replaced
with integrals and equation [15] results.
The complicated operator in brackets
can be represented by a spring, a dash-
pot, and an infinite series of spring-
dashpot units which may be character-
ized by the density distribution func-
tion 7(A) and the associated constants
Dii (X). The constants Dii (X) in equation
[15] correspond to the product Co).
4)i (s ) where s no longer represents a
finite number of terms. The operator of
equation [15] is of a very general' form.
In order to grasp the significance of
these operators some specific examples
are helpful.

[p f 
D4 (X) 7(X) 

dX +Qi =	 0 p +

+ pD. I qi . . [15]

For an operational stress-strain equa-
tion like equation 16, which expresses
strain ( e) in terms of stress (a), the
operator 0* can have many forms. One
simple form is equation [17] . The term
n represents the viscosity of the model,
the product nr is the elastic modulus,
and p is a time derivative operator.

e = 0* u	 	 [16]

rp 
0*	 	  [17]

(r p)

If a constant stress of unit value is
applied at time zero, [represented by
the function 1(t)] the rules of opera-
tional calculus may be used to obtain
the solution of the stress-strain equation
in the form of equation [18], This is
the equation for the Maxwell unit
(spring and dashpot in series),

= (1/nr + t/) 1(t) 	  [18]

Another common operator is of the
form of equation [19].

0' =	 	  [19]

The terms 13 and 9 are constants. For the
same constant stress loading conditions
as in the previous example, the solution
for this operator is given in equation
[20]. The gamma function is represent-
ed by r ( i + 6). The strain represented
by this equation is similar to that of a
Voight model (spring and dashpot in
parallel). 6 varies between 0 and 1. If 0

= 0 the response is elastic. If 0 = 1 the
response is viscous. For 0 < 6 < 1 re-
sponse is viscoelastic.

e = [t9/i3P(1 + 6)] 1 (t) 	  [20]

A wide variety of material behavior may
be described by using either of these
two operators or simple additive combi-
nations of them.

Operator 0', equation [19], can be
rewritten to take the general form of
the operator in equation [15] as in
equation [21] .

sin0 It

	[21]

The corresponding spectral distribution
function is given in equation [22] .

13 sin° 7r
Dip) 7,(X) —	 . [22]

Dii (X) in this case is not a function of X.
It is written as it is to show the
correspondence with equation [15] . D.
and Do are zero.

Note that equation [16] has the
same form as the simple stress-strain
equation for one-dimensional elastic
theory, Biot has established what is
called a correspondence principle. The
correspondence principle states that
viscoelastic operators may be substi-
tuted directly for the elastic moduli of
elastic theory equations. This is the only
requirement necessary to convert the
equations of elastic theory to those of
viscoelastic theory (within the limits of
applicability of viscoelastic theory). A
person may therefore attack a mechan-
ics problem and obtain descriptive equa-
tions with elastic theory, substitute
operators for the elastic constants, and
solve to obtain a viscoelastic solution
for the problem.

APPLICATIONS

For materials that may be described
satisfactorily with simple operators or
distribution functions, as equation
[22] , Biot (1962a and 1962b) suggests
the analysis of "internal" properties of a
material by dynamic testing. If the
behavior of interest, whether it be heat
flow, water flow, salt movement or
strain, exhibits viscoelastic (time de-
pendent) behavior, the measurement of
that property will be dependent upon
the frequency of the imposed driving
force or forces during the measurement.
Consider the interaction of compaction
and water flow in an unsaturated soil.
If stress at one end of an unsaturated
soil column is cycled more rapidly than

[11]

qi = E Q.

0' = 0-1)f	 P	 dX
ar	 0 p + X
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Folding Instability of Layered Media

FIG. 1 Tracing of a photograph showing the
buckling of a 1-mm thick acetate strip in
corn syrup with compressive loads on the
acetate strip of 1.6 kg (A), 6.6 kg (B), and
11.6 kg (C) (Biot, Ode and Roever, 1961).

the laress can be redistributed from
both the soil and water in the column to
just the soil, the column will probably
have different properties than if a con-
stant stress were applied. At frequencies
higher than those permitting stress re-
distribution by water flow, other re-
laxation mechanisms that respond more
rapidly than water flow can be examined.
Such a measurement should be essen-
tially independent from water flow, since
the water would be essentially "frozen"
in place by cyclic stresses too rapid to be
redistributed by flow. To expect dis-
tinct non-interacting frequencies for
each stress redistribution mechanism in
a soil would not be reasonable, of
course. Such an approach, however,
may help to explain some of the con-
fusing responses of soils to vibrating
loads.

Biot (1941, 1955a, 1956b, 1956c,
1963) and Biot and Willis (1957) devel-
op equations which describe the move-
ment of both the solid and fluid mate-
rial of a saturated porous medium. He
presents very general equations using a
three-dimensional elastic theory analysis
and a generalized form of Darcy's law to
include all possible cases of nonuniform-
ity. Simplifications are illustrated as
various types of symmetry are consider-
ed. He also considers the case of variable
permeability where permeability is de-
pendent upon the amount of deforma-
tion of the solid phase of the porous
medium. His solutions, however, are
very general. There are nd specific num-
erical examples given. He also illustrates
the use of the equations by analyzing
the settlement of a loaded soil column.
The solution of this problem is also
carried out in very general terms.

Cyclic driving "forces" during testing
need not be limited to mechanical stress
to apply the viscoelastic analysis. One of
the many problems that will, no doubt,

be encountered in such tests will be
interactions of different phenomena.
Heat flow, water movement in both
liquid and vapor phase, and soil move-
ment may have to be considered simul-
taneously. Salt effects on soil stress-
strain or other properties might be
studied using electro-osmosis for control
of salt and water distribution in a
column. The construction of apparatus
to handle simultaneous measurement or
imposition of stress, pore water pres-
sure, temperature, salt concentration or
voltage, all at selectable frequencies,
may be a formidable task.

Irreversible thermodynamics provides
a theoretical framework within which
such a large number of variables may be
examined and interactions between
them permitted. When a large . number
of variables are considered, the number
and length of equations required may
approach unmanageable quantities. For
example, if only stress and strain, heat
flow and water flow in both liquid and
vapor phase are considered for a general
three-dimensional analysis, at least 12
simultaneous equations with 12 un-
knowns would have to be solved. As
many as 144 individual constants have
to be evaluated for the most general
case. Judicious selection of experi-
mental conditions will be necessary to
minimize the number of measurements
required to evaluate interactions. Selec-
tions of boundary conditions and
symmetry of samples and test equip-
ment are used to reduce the number of
measurements in any one experiment.

External or Gross Behavior

Another interesting area of applica-
tion of viscoelastic theory has been
developed by Biot et al. (1961), Biot
and Ode (1962), and Blot (1959a,
1959b, 1961, 1963, 1964). None of this
theoretical development will be re-
produced here, however. The topics
developed are the folding of stratified
viscoelastic media and internal buckling
of confined multilayered structures. Al-
though primary application of this
theory was to geologic rock structures,
the discussions of the nature of internal
buckling and ultimate failure of visco-
elastic layers in response to lateral con-
fining pressure may provide a starting
point for the description of soil be-
havior during tillage. He is able to
confirm some of his predicted folding
behavior for thin plastic and aluminum
sheets imbedded in viscous materials
such as corn syrup. In Fig. 1 is il-
lustrated the general type of buckling
that occurs in thin strips of viscoelastic
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FIG. 2 Tracing of a photograph showing the
deformation of soil in front of a simple
tillage tool (Gill and Vandenberg, 1967).

media. When ratios of viscosities or the
time constants of adjacent layers are
nearly equal, the folds that occur are
not as prominent. Such would most
likely be the case in soils. However, a
buckling type of failure appears to be
occurring in front of a simple tillage
tool as shown by Gill and Vandenberg
(1967) and shown in Fig. 2. Conditions
can exist where buckling phenomena is
not exhibited, however, failure or shear
planes still occur. On this subject, Biot
(1965) discusses the relation of internal
instability to the occurrence of sliplines
or the shear planes in elastic or "plastic"
media.

In order to study folding behavior
more completely, additional theoretical
development must be used. This in-
volves including inertia terms in the
general descriptive equations. Equation
[23] gives the form of the necessary
equation. W is a quadratic function
similar in form to D. Biot (1962a,
1962b) applied this equation to such
topics as sonic and ultrasonic wave
transmission in porous media

aV	 aD	 d aw
—	 =Qiaq,	 dt a qi

[23]

and dynamic stability of multilayered
media. Equation [23] is a generalized
form of the common mass-spring-
dashpot or resistor-capacitor-inductor
equation. The application of this theory
to thermoelastic phenomena provides
behavior equations which relate deform-
ation and heat flow and are shown to be
directly analogous to the description of
consolidation and fluid flow in an elas-
tic porous medium, Biot (1956a).

Eringen (1960), Valanis (1968), and
Gorodtsov and Leonov (1968) have also
derived the fundamental behavioral
equations for fluids, solids, and visco-
elastic material by utilizing irreversible
thermodynamics. Their work parallels
part of that of Blot's. Schapery (1964)
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continued from the development of be-
havioral equations by Eringen (1960) and
presented an analysis of crack propaga-
tion in viscoelastic media. His work
includes as a simplified case the equiva-
lent to Griffith's (1920) criterion for
initiation of crack growth in an elastic
material. As with the work of Biot, this
material is all theoretical and untested,
particularly for soil. The vast scope of
the theory, however, makes its applica-
tion appear promising.

Non-equilibrium thermodynamics
were used specifically for the evaluation
of tillage tool-soil interaction by
Fornstrom, Brazee, and Johnson
(1970). They have taken a major first
step in the use of this theory for soil by
describing a specific system, measuring
its response, and examining the nature
of the force function required to pro-
vide the observed response.

PROJECTIONS AND EVALUATION

If one is to compare classical visco-
elastic theory with that based on therm-
odynamic development, one can find
parallel descriptions for almost any
form of material behavior to which the
models are applicable. As far as practical
application is concerned, the general
viscoelastic theory has been utilized to a
much greater extent and is much more
familiar to more people. Procedures are
complete for most of the measurements
required by viscoelastic theory. This is
not the case for the thermodynamic
theory. Experiments designed to evalu-
ate it will be inherently more complex
because of the interrelationships be-
tween variables that must be evaluated.
Evaluation of mechanisms of behavior
should be equally well described by
either approach. Additional studies,
such as those of Wu, et al. (1966), who
used rate process theory to analyze soil
consolidation, should contribute to the
understanding of mechanisms of soil
behavior.

With these theories a description of
the influence of water content on soil
strength and behavior should be possi-
ble. Krizek (1968) has suggested that
the effects of temperature on polymer
behavior may be very similar to the
influence of water content on soil be-
havior. He has su Kested that the "glass
temperature" of plastics (that tempera-
ture range over which plastics convert
from primarily solid to primarily liquid
properties) may correspond to the
shrinkage limit of clays, for example.
The implication is that some soils will
exhibit no or very little shear strength
when wet above a certain critical water

content. Field observations of earth-
slides where surface soil separates from
that beneath it along a saturated hori-
zon and formation of crusts in the
bottom of irrigation furrows are con-
sistent with such predictions. Also im-
plied is the absence of the slides or
crusts if water content can be main-
tained below the critical level.

For plastics there is a time-tempera-
ture correspondence such that a high
temperature will result in deformation
expected at a lower temperature with
longer loading time. If temperature ef-
fects on plastic are indeed similar to
water content effects in soils, this may
imply a time-water content correspond-
ence. Water content influences on soil
strength might be studied by long time
experiments at constant water content
or long time behavior may be studied by
varying (increasing) water content of a
sample.

Comments on the relationship be-
tween mathematical models and physi-
cal reality may be in order at this time.
Kolsky (1964) has pointed out that true
agreement between mathematical
models (particularly the simpler ones)
and physical reality will be rare. The
only way to determine actual behavior
of a material is to measure it. In many
uses however, a model will be found
that matches real behavior sufficiently
for the purposes at hand.

The process of relating physical
mechanisms to observed phenomena,
such as is proposed by the thermody-
namic approach and rate process theory,
is subject to debate. Wei (1966) for
example states that in spite of thermo-
dynamic origins of equations they are
simply phenomenological equations
(just fancy best-fit equations) that can
be adapted to describe any combination
of linear processes. Nonlinear behavior
is not accounted for and no mechanisms
can be implied from the theory. Others
do not consider these restrictions to
exist for all applications of the theory.
Actual data correlation attempts will
have to be made to help resolve such
debates.

The irreversible thermodynamic
theory should be kept in proper per-
spective, however. It is not a cure all, no
matter what the extent of its possible
application. It is a linear theory as is
elastic theory. It has the capacity to
describe very complex, combined phen-
omena but if nonlinear processes are
involved it must be modified to account
for them. Otherwise, it should not be
expected to provide more than a refer-
ence with which to compare observed

behavior just as elastic theory provides a
reference with which simple nonlinear
behavior may be compared. Procedures
for adaption of the theory to nonlinear
processes have been suggested by
Eringen (1960) and Blot (1965).
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