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Abstract: Post-harvest storage loss in sugar beets due to root rot and respiration can cause >20%
sugar loss. Breeding strategies focused on factors contributing to improved post-harvest storage
quality are of great importance to prevent losses. Using 16S rRNA and ITS sequencing and sugar beet
mutational breeding lines with high disease resistance (R), along with a susceptible (S) commercial
cultivar, the role of root microbiome and metabolome in storage performance was investigated. The R
lines in general showed higher abundances of bacterial phyla, Patescibacteria at the M time point, and
Cyanobacteria and Desulfobacterota at the L time point. Amongst fungal phyla, Basidiomycota (including
Athelia) and Ascomycota were predominant in diseased samples. Linear discriminant analysis Effect
Size (LEfSe) identified bacterial taxa such as Micrococcales, Micrococcaceae, Bacilli, Glutamicibacter,
Nesterenkonia, and Paenarthrobacter as putative biomarkers associated with resistance in the R lines.
Further functional enrichment analysis showed a higher abundance of bacteria, such as those related
to the super pathway of pyrimidine deoxyribonucleoside degradation, L-tryptophan biosynthesis at
M and L, and fungi, such as those associated with the biosynthesis of L-iditol 2-dehydrogenase at L
in the R lines. Metabolome analysis of the roots revealed higher enrichment of pathways associated
with arginine, proline, alanine, aspartate, and glutamate metabolism at M, in addition to beta-alanine
and butanoate metabolism at L in the R lines. Correlation analysis between the microbiome and
metabolites indicated that the root’s biochemical composition, such as the presence of nitrogen-
containing secondary metabolites, may regulate relative abundances of key microbial candidates
contributing to better post-harvest storage.

Keywords: sugar beet; post-harvest storage resistance; root microbiome; bacterial marker; fungal
marker; storage loss; metabolome

1. Introduction

Sugar beet (Beta vulgaris L.) is an important crop in the mid and western parts of the
United States (U.S.), as ~55% of the total sugar produced in the U.S. is obtained from this
crop. Following harvest, sugar beet roots are typically stored for long periods of time in
outdoor piles or storage buildings as factories are unable to process the whole crop at
harvest [1]. In Idaho, about two-thirds of the crop is typically stored for some period of
time. Roots are stored for an average of 60 to 70 days, and in some cases for 160 days or
more [2]. Storing sugar beet roots for long periods of time under ambient conditions can be
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challenging due to adverse weather conditions and microbial growth on the roots [1,3]. In
Idaho, the average annual loss recorded between 2010 and 2012 was USD 6.40/ton of roots
harvested, and an estimated 4.8 to 5.8 million tons of roots were harvested annually during
this period, resulting in losses of millions of dollars [1,2,4]. For areas with colder winter
temperatures in the U.S., such as Minnesota and North Dakota, roots in both outdoor and
indoor piles are usually frozen solid by mid-December when ambient temperatures average
<−10 ◦C, which stabilizes the roots for long-term storage [1,5,6]. In other areas of the U.S.,
such as Colorado, Idaho, Michigan, and Montana, where roots are stored under ambient
conditions, only roots near the pile surface freeze since temperatures are either not cold
enough or fluctuate too much to maintain the whole pile in a frozen state [1,6]. These factors,
along with freeze–thaw cycles, promote microbial growth [7]. Several methods, including
physical control practices such as tarping, ventilation, and stripping the outer meter of
sugar beet roots from the pile surface, have been investigated to reduce storage losses [5,8,9].
Besides physical methods, chemical treatments using fungicides, such as Propulse and
Stadium, have had some success; however, none of the fungicides are currently labeled
for this use [2,10–15]. Despite these physical and chemical methods managing to reduce
sucrose losses to some extent, the financial losses in storage are still substantially high
and additional management options are needed. Identifying sources of sugar beet host
resistance to rot, and use of cultivars with resistance to storage rot, can alleviate losses,
although the mechanisms of such resistance are not always fully understood [16–20].

Plants have co-evolved with their innate microbiome to better cope with biotic and
abiotic stresses [21–23]. Bacteria are the most abundant microbial community and consti-
tute most of the host microbiome in both plants and animals [24]. Microbiome composi-
tion in plant tissues is not only critical in maintaining optimum plant health but is also
highly important in resistance against diverse pathogens including fungi, bacteria, and
viruses [24–26]. The beneficial role of host plant-associated bacteria against pathogens has
been demonstrated in several studies and this depends upon their presence/abundance in
tissues that are infected by the pathogens. As an example, the seed-endophytic bacterium,
Sphingomonas melonis, was found only in the blight-resistant rice cultivar, and artificial
inoculation of the disease-susceptible rice cultivars using the pure strain resulted in the
disease-resistant phenotype [27]. This was attributed to the production of anthranilic
acid (by S. melonis), which interferes with the protein, RpoS, involved in virulence factor
biosynthesis by the seedborne pathogen, Burkholderia plantarii. Microbiome assembly in
disease-resistant germplasms in the absence of pathogens and further restructuring of
the microbiome under diseased conditions will improve our understanding of host plant
resistance mechanisms. This will aid in the development of future mitigation strategies to
minimize future losses in agricultural production in an eco-friendly manner.

Microbiome-related work in sugar beet has primarily focused on the identification of
microbes putatively associated with resistance and/or susceptibility, predominantly against
fungal pathogens related to post-harvest storage. The role of the microbiome has been
investigated by comparing the rhizosphere microbiome of maritima (the ancestor of beet
crops), Beta vulgaris ssp., and modern sugar beets, Beta vulgaris L. [28], field performance
and disease resistance [29], roots collected from outdoor storage piles [30], genotypic
differences in post-harvest storage quality and disease resistance [31], etc. Other factors
affecting the post-harvest storability of sugar beet roots have been attributed to root cell
anatomy, cell wall integrity, respiration and carbohydrate metabolism, metabolites such as
carbohydrates/amino acids/organic acids, etc. [32,33].

Changes in the root microbiome over time are associated with changes in the root
metabolome. Their contributions to resistance or susceptibility to diseases under prolonged
storage conditions are poorly understood. Whether specific root metabolites may regulate
the relative abundances of key microbial candidates that play roles in disease resistance
is not fully understood. Storage conditions also greatly vary depending upon indoor vs.
outdoor storage, changes in temperature and relative humidity, geographical locations,
the prevalence of specific storage-related pathogens in specific geographical areas, etc. In
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this study, we used five sugar beet genotypes, including three mutational breeding lines
[KSG2 (KEMS06), KSG3 (KEMS08), and KSG4 (KEMS08-600)] and a breeding line from a
Polish background with high sucrose content [KSG6 (KPS25)] developed in Kimberly; ID
(USDA-ARS), which were earlier demonstrated to possess significant resistance against
post-harvest diseases [34–36], along with a susceptible commercial cultivar. The overall goal
was to investigate how the root microbiome and root metabolome cooperate to improve
post-harvest storability of sugar beet roots under southern Idaho conditions. We analyzed
these changes in the roots at two different time points of storage, mid (M) and late (L).
Our results indicate that sugar beet genotype-specific root metabolites may influence the
relative abundance of potentially beneficial microbes, contributing to higher resistance
against storage pathogens.

2. Results

Sugar beet root samples were collected at mid-storage (M) and late-storage (L) time
points to investigate changes in root microbiome (bacterial and fungal) and metabolome
relating to disease resistance during prolonged indoor post-harvest storage. After quality
control, an average of ~84,000 raw tags/sample and ~78,000 valid tags/sample were
mapped to a 16S rRNA database [37] and received zero-radius operational taxonomic units
(zOTUs) (Table S1). For ITS sequencing, an average of ~386,000 raw tags/sample and
~377,000 valid tags/sample were obtained (Table S2). The rarefaction curves (Figure S1)
obtained from 16S, along with ITS sequencing, revealed that the observed_OTUs identified
in the samples obtained at the M and L time points rarefied/plateaued at a specific number
of sequences for all samples. This indicated that deeper sequencing would not have resulted
in increasing the number of OTUs obtained for both bacterial and fungal microbiomes in the
samples. Sugar beet mutational breeding lines, along with another breeding line of Polish
origin developed in Kimberly (ID) that showed improved resistance (R) to post-harvest
diseases, were compared to a susceptible (S) commercial cultivar.

2.1. Bacterial and Fungal Phyla and Genera Showed Significant Changes Between the Resistant
and Susceptible Lines and with Storage Times

A total of 31 bacterial phyla were detected in the roots of R and S lines across all
samples and only six phyla showed a minimum abundance of 0.1% and/or higher across a
majority of the samples (Figure 1A; Table S3). At both M and L storage time points, bacteria
belonging to the phylum Cyanobacteria were predominant (76–84%) in the roots of R and S
lines, followed by Proteobacteria (13–19%) and Actinobacteria (1–6%). In general, bacterial
phyla whose abundances were 0.1–0.9% included Firmicutes and Desulfobacterota, both of
which were lower in the R lines, and Patescibacteria, which were higher in the R lines at the
M time point (Figure S2A). Cyanobacteria were predominant at the L time point and were
higher in the R lines, KSG2 and KSG4, in comparison to the S line (Figure S2B).

At the M time point, examples of bacterial genera that primarily exhibited higher rela-
tive abundances in the R lines included Erythrobacteraceae_unclassified, HT002, Desulfovibrio,
etc. Bacterial genera that were relatively more prevalent in the S line included Desulfovibri-
onaceae, Bacillus, Methyloversatilis, Neisseria, Kocuria, Terribacillus, etc. (Figures 1B and S3).
At the L time point, examples of bacterial taxa that showed higher relative abundances
primarily in the R lines included Erythrobacteraceae, Vicinamibacteraceae, Desulfovibrio, etc.
Bacterial genera with higher relative abundances in the S line at the L time point included
Lactobacillus, Ralstonia, Marmoricola, etc. (Figure 1B, Table S4).

A total of three predominant fungal phyla could be resolved in the roots of R and
S lines across all samples and only one phylum (Ascomycota) showed an abundance of
>10% in this study (Figure 1C; Table S5). At the M time point, fungal phyla detected in
our samples included Ascomycota (15–29%), Basidiomycota (<0.1%), and unresolved fungal
phyla named as fungi_unclassified (70–85%). No significant differences in fungal phyla
were observed between the R and S lines at this time point. At the L time point, the
fungal phyla detected included Ascomycota (14–21%), Zygomycota (<0.1%), Basidiomycota
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(<1%), and fungi_unclassified (78–85%). The phylum, Zygomycota, showed higher relative
abundance in the S line in comparison to the R lines at this time point (Figure S4A). The
fungal genera, Mucor, showed higher relative abundance in the S line at the L time point vs.
R lines (Figures 1D and S4B).
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Figure 1. Sugar beet genotypes relatively resistant to post-harvest storage diseases showed differences
in the abundance of bacterial and fungal phyla and genera compared to the susceptible genotype.
Mean relative abundance of (A) bacterial phyla; (B) bacterial genera; (C) fungal phyla; and (D) fungal
genera in sugar beet roots at mid and late post-harvest storage stages. Susceptible genotype: Sus_Ck;
resistant genotypes: KSG2, KSG3, KSG4, and KSG6; M: mid time point; L: late time point. The data
are mean ± standard error of 4 biological replicates, each replicate consists of tissues harvested from
2 sugar beet roots. The heat maps (B,D) are plotted using z-score values of the species abundance. ‘0’
means the abundance is at the mean value. Red color means the species abundance is higher than the
mean, and blue color means that the species abundance is lower than the mean. Blue to red transition
means abundance of the species is transitioning from ‘lower than mean’ to ‘higher than mean’.
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2.2. Bacterial and Fungal Diversity in the Roots Varied Depending upon Genotype and
Storage Stages
2.2.1. Alpha Diversity

The alpha diversity between the R and S lines at both M and L time points was quanti-
fied using observed_OTUs and Shannon index analyses. In general, no major difference in
alpha diversity was observed among samples except for a few specific cases. A significant
difference in bacterial diversity was observed between KSG4 and Sus_Ck at the M time
point, as estimated through observed_OTUs and Chao1 analyses (Table 1A). The KSG6 line
showed significant differences in fungal diversity (vs. Sus_Ck) at M, as estimated through
observed_OTUs and Shannon analyses (Table 1B).

Table 1. Alpha diversity in the resistant (R: KSG2, 3, 4, and 6) and susceptible (S: Sus_Ck) sugar beet
genotypes at mid (M) and late (L) storage time points. (A) Bacterial diversity and (B) fungal diversity.
The data are mean ± standard error of 4 replicates (each replicate consists of 2 sugar beet roots);
Student’s t test: p < 0.05 * between the susceptible and resistant genotypes at M and L time points.

(A)

Treatment Observed_OTUs Shannon

M_KSG2 186.25 ± 23.84 1.26 ± 0.09
M_KSG3 221.25 ± 17.50 1.17 ± 0.09
M_KSG4 133.5 * ± 28.12 1.04 ± 0.10
M_KSG6 257.75 ± 50.80 1.48 ± 0.25

M_Sus_Ck 214 ± 19.55 1.35 ± 0.13
L_KSG2 231 ± 26.54 1.17 ± 0.09
L_KSG3 243.75 ± 48.02 1.49 ± 0.13
L_KSG4 235.50 ± 26.22 1.21 ± 0.05
L_KSG6 273 ± 38.94 1.84 ± 0.28

L_Sus_Ck 185.50 ± 33.28 1.60 ± 0.32

(B)

M_KSG2 227.75 ± 17 7.27 ± 0.11
M_KSG3 233.25 ± 19.75 7.26 ± 0.16
M_KSG4 278.25 ± 56.81 7.48 ± 0.29
M_KSG6 297.75 * ± 27.75 7.59 * ± 0.08

M_Sus_Ck 210 ± 83.85 7.08 ± 2.34
L_KSG2 180.75 ± 6.14 6.86 ± 0.13
L_KSG3 200 ± 10.40 7.04 ± 0.15
L_KSG4 223.75 ± 14.05 7.21 ± 0.09
L_KSG6 179.75 ± 7.34 6.93 ± 0.09

L_Sus_Ck 199 ± 30.11 7.04 ± 0.25

2.2.2. Beta Diversity

To estimate microbial community structure (between-sample diversity) considering
their relative abundance and phylogenetic relationships in specific samples, beta diver-
sity analysis was performed. Cluster dendrograms and Principal Coordinate Analysis
(PCoA) were used to compare and visualize microbial communities among samples. The
cluster dendrograms in Figure 2A,C show the hierarchical relationship between different
treatments. The PCoA variation (16S sequencing) observed between PCoA1 (50.22%) and
PCoA2 (29.07%) indicated separation among treatments (Figure 2B). This variation (ITS)
was relatively larger (PCoA1: 56.18%, and PCoA2: 16:49%) in the case of the fungal micro-
biome among treatments (Figure 2D). Comparison of weighted UniFrac distances among
samples showed significant differences (p < 0.05) in the root bacterial community between
Sus_Ck (S) and KSG2 at the M time point and Sus_Ck (S) and KSG4 at the L time point
(Figure 2C). For the fungal community, weighted UniFrac distances showed significant
differences (p < 0.05) between Sus_Ck (S) and KSG3, 4, and 6 at the L time point (Figure 2F).
In general, the R and S lines were relatively clustered together for both bacteria and fungi,
and a separation between samples at the M and L storage time points was observed.



Int. J. Mol. Sci. 2024, 25, 12681 6 of 25

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  6  of  26 
 

 

samples showed significant differences (p < 0.05) in the root bacterial community between 

Sus_Ck (S) and KSG2 at the M time point and Sus_Ck (S) and KSG4 at the L time point 

(Figure 2C). For the fungal community, weighted UniFrac distances showed significant 

differences (p < 0.05) between Sus_Ck (S) and KSG3, 4, and 6 at the L time point (Figure 

2F). In general, the R and S lines were relatively clustered together for both bacteria and 

fungi, and a separation between samples at the M and L storage time points was observed. 

 

 

Figure 2. Beta diversity of bacteria and fungi in the resistant (R: KSG2, 3, 4, and 6) and susceptible 

(S: Sus_Ck) sugar beet genotypes at mid (M) and late (L) storage time points. (A) Cluster dendro-

gram of bacterial diversity; (B) principal coordinate analysis (PCoA) of bacterial diversity; (C) com-

parison of weighted UniFrac distances between S and R genotypes (16S); (D) cluster dendrogram of 

fungal diversity; (E) principal coordinate analysis (PCoA) of fungal diversity; and (F) comparison of 

Figure 2. Beta diversity of bacteria and fungi in the resistant (R: KSG2, 3, 4, and 6) and susceptible (S:
Sus_Ck) sugar beet genotypes at mid (M) and late (L) storage time points. (A) Cluster dendrogram of
bacterial diversity; (B) principal coordinate analysis (PCoA) of bacterial diversity; (C) comparison
of weighted UniFrac distances between S and R genotypes (16S); (D) cluster dendrogram of fungal
diversity; (E) principal coordinate analysis (PCoA) of fungal diversity; and (F) comparison of weighted
UniFrac distances between S and R genotypes (ITS). The data are mean ± standard error of 4 replicates
(each replicate consists of 2 sugar beet roots); * p < 0.05. Solid dark circle next to the treatment
represents the susceptible genotype.

Linear discriminant analysis Effect Size (LEfSe) was used to identify any potential
biomarkers associated with the R lines used in this study. At the M time point, the LEfSe
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comparison between Sus_Ck and the R lines showed a putative bacterial marker only in the
KSG6 line. Examples of bacterial taxa associated with KSG6 (Figure 3A,B), with high LDA
scores (between 22–27), included Micrococcales, Micrococcaceae, Bacilli, Glutamicibacter, etc. At
the L time point (Figure 3C,D), Cyanobacteria were predominant in KSG2, Clostridia in KSG4,
and Micrococcaceae, Nesterenkonia, and Paenarthrobacter in KSG6. No fungal biomarkers
associated with the R and S genotypes used in this study could be resolved using LefSe
analysis when compared at the M and L time points.
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Figure 3. Linear discriminant analysis Effect Size (LEfSe) analysis of sugar beet genotypes at different
post-harvest storage time points shows putative biomarkers associated with resistant or susceptible
genotypes. (A) Bar plot of bacterial taxa at the mid (M) time point; (B) hierarchal taxonomic cladogram
of bacterial taxa at the mid time point; (C) bar plot of bacterial taxa at the late (L) time point; and
(D) hierarchal taxonomic cladogram of bacterial taxa at the late time point. Susceptible genotype:
Sus_Ck; resistant genotypes: KSG2, KSG3, KSG4, and KSG6. Lowercase letters denote d: domain; p:
phylum; c: class; o: order; f: family; g: genus.

2.3. Pathway Enrichment Analysis of the Microbiome Data Showed Differential Regulation in the
Resistant vs. Susceptible Lines

To obtain further insights into the relationship between the relative abundance of
specific bacteria or fungi in the roots of R and S lines and their putative roles in post-harvest
disease resistance, functional profiling (KEGG pathway association) of both bacterial and
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fungal communities was performed. KEGG analysis of fungal microbiome data did not
exhibit any differences between the R and S lines.

At the M storage time point, the majority of the detected bacterial microbiome-
associated KEGG pathways were primarily down-regulated (p < 0.05) in the R lines, except
for KSG2. A few examples of KEGG pathways that were highly down-regulated in the R
lines at the M time point include the super pathways of pyrimidine deoxyribonucleoside
degradation, the super pathway of thiamin diphosphate biosynthesis I, the super pathway
of thiamin diphosphate biosynthesis II, etc. (Figure 4A). At the L time point, pathways
that were primarily up-regulated in the R lines included purine nucleobase degradation I
(anaerobic) and the super pathway of L-tryptophan biosynthesis (Figure 4B).
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Figure 4. KEGG modules were significantly different (p < 0.05 *) between the resistant and susceptible
sugar beet genotypes. (A) Mid (M) storage time point (bacteria; 16S); (B) late (L) storage time point
(bacteria; 16S); and (C) mid (M) storage time point (fungi; ITS). Data are mean ± standard error of
4 replicates (each replicate consists of samples obtained from two roots). Sus_Ck: susceptible
genotype; KSG2, KSG3, KSG4, and KSG6: resistant genotypes.

Pathway enrichment of the fungal microbiome could be resolved only at the M time
point. The majority of the detected KEGG pathways were up-regulated in the R lines. A few
examples of KEGG pathways that were highly up-regulated in the R lines include L-iditol
2-dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, cinnamyl-alcohol dehydrogenase,
etc. (Figure 4C).

2.4. Correlation Between Bacterial and Fungal Communities Across Genotypes

To understand the relationships between bacterial and fungal communities and if
their co-occurrence was associated with post-harvest resistance and/or susceptibility, a
correlation matrix (Figure 5A,C) and correlation networks (Figure 5B,D) were constructed,
including all genotypes collected from both M and L time points. A strong positive
correlation (+0.83) was observed between Aeromicrobium and Nocardioides.

In the case of the fungal microbiome, a moderate positive correlation (+~0.70) was
observed between Agaricomycetes and Basidiomycota, and between Agaricomycetes and Co-
prinopsis. A moderate correlation (+0.62) was also observed between Mucor and Cadophora.
A strong negative correlation (−0.96) was observed between Ascomycota and an unclassified
fungal group.

2.5. Untargeted Metabolome Analysis of the Roots of Susceptible (S) and Resistant (R) Lines

Untargeted metabolome analysis was performed to understand changes in metabo-
lites in the roots of the resistant and susceptible lines during prolonged indoor storage.
Figure S5 shows the PCA analysis and clustering of all samples originating from the M
and L time points. Overall, the genotypes maintained specific clustering patterns. Selected
metabolites that showed the most changes between the R and S lines are presented in
Figure 6. Metabolites that were significantly higher in the R lines, primarily in KSG3, KSG4,
and KSG6 (vs. S), at the M time point (Figure 6A) include kojic acid, gamma aminobutyric
acid (GABA), N,N-dimethylformamide, pyridoxal, etc. Examples of metabolites that were
primarily higher in the R line, KSG2 (vs. all other lines), include 5-methoxytryptophol, ec-
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gonine, spermidine (Spd), 4-methylpyrimidine, 4-ethylbenzaldehyde, etc. A few examples
of metabolites higher only in the S line include euparin, caryophyllene, scopoletin, etc.
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Figure 5. Sparse Correlations for Compositional data (SparCC). (A) Correlation heatmap between
bacterial communities; (B) correlation network between bacterial communities; (C) correlation
heatmap between fungal communities; and (D) correlation network between fungal communities. A
solid line between two bacterial/fungal communities indicates a positive correlation and a dotted
line indicates a negative correlation between them. The thicker the solid line, the higher the value of
the positive correlation between them.
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Figure 6. Untargeted metabolome analysis of sugar beet roots showed distinct differences between
the resistant (R) and susceptible (S) lines at mid and late storage time points. Metabolites showing
major differences between the R vs. S lines at the (A) mid storage stage and (B) late storage stage.
Sus.Ck: susceptible genotype; KSG2, KSG3, KSG4, and KSG6: relatively resistant genotypes; M: mid
and L: late storage time points.

At the L time point (Figure 6B), the relative abundances of metabolites in the R lines (vs.
S) exhibited a different pattern. Metabolites highly abundant in the R line, KSG2, included
betaine, Spd, 5-methoxytrytophol, 3-(2-hydroxyethyl)indole, 4-methylpyrimidine, cytisine,
etc. Metabolites that were predominantly higher in the R lines (vs. S) were asparagine,
ecgonine methyl ester, crotonic acid, GABA, 5-hydroxyindole-3-acetic acid, indoleacetic
acid, etc. Metabolites that were only higher in the S line included phthalic acid, isovanillic
acid, methylsuccinic acid, etc.

Pathway enrichment analysis showed a higher enrichment of metabolites primarily
associated with arginine, proline, alanine, aspartate, and glutamate metabolism, followed
by flavone and flavonoid metabolism in the R lines at the M stage (Figure 7A). At the L
stage, similar amino acids, in addition to butonate metabolism pathways, were enriched in
the R lines (Figure 7B).

2.6. Carbohydrate Content in the Roots of Susceptible (S) and Resistant (R) Lines

The root carbohydrate content in the R and S lines at the late storage stage was
also analyzed. The sucrose content in the root samples ranged between 147–178 mg/g
fresh weight (FW) (Figure 8A). No significant differences in sucrose content were noticed
between the R and S lines after post-harvest storage. The concentrations of other sugars in
the sugar beet roots detected in this study were between 0.84–5.40 mg/g FW (Figure 8B).
In general, no significant difference in fructose content was observed between the R and
S lines, except for the KSG6 line, which showed a 42% lower fructose content than the
Sus_Ck line. Glucose and galactose contents were 28–52% higher in the KSG3 and KSG4
lines, and raffinose content was 64% higher in KSG6 (vs. Sus_Ck).
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Figure 8. Carbohydrate content in the roots showed small changes between the resistant and
susceptible lines at the late storage time point. Cellular contents (mg/g FW) of: (A) sucrose and
(B) fructose, glucose and galactose, and raffinose. Data are mean ± standard error of 4 replicates (each
replicate consists of samples obtained from two roots); p < 0.05 * between the susceptible (Sus_Ck)
and resistant genotypes (KSG2, KSG3, KSG4, and KSG6).

2.7. Correlation Analysis Between the Root Microbiome and Metabolome

As the microbial composition in sugar beet roots is critical for root resistance against
pathogens, we therefore performed a correlation analysis to understand the relationships
between the root microbiome and root metabolites. The bacterial genera in either the R
or S lines that were significantly associated with specific root metabolites were identified
(Figure 9). Two of the highly resistant R lines (KSG6 and KSG4), along with the S line,
Sus_Ck, are presented in Figure 9, and other R lines (KSG2 and KSG3) are presented
in Figure S6. In Sus_Ck (Figure 9A), some examples of significant positive correlations
between bacteria (putatively associated with susceptibility) and metabolites include Lac-
tobacillus, which is positively correlated with metabolites such as 17-estradiol, estrone,
prespatane, etc.; Ralstonia, which is negatively correlated with metabolites such as crotonic
acid, ecgonine methyl ester, etc.; and Marmoricola, which is positively correlated with
plumericin and negatively correlated with L-pyroglutamic acid. Examples of some sig-
nificant positive correlations between bacteria (putatively associated with resistance) and
metabolites in the R line KSG6 (Figure 9C) include Nesterenkonia, which is positively corre-
lated with kynurenine, and Paenarthrobacter, which is positively correlated with metabolites
including LysoPC, sn-glycero-3-phosphocholine, and acetoacetate. In KSG4 (Figure 9B),
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Erythrobacteraceae is positively correlated with adenosine and 5-phenylvaleric acid. In KSG2
(Figure S6A), Muribaculaceae is positively correlated with crotonic acid, methylsuccinic acid,
etc., Erythrobacteraceae is positively correlated with GABA and 3-pyridinol, Paenarthrobacter
is positively correlated with kynurenine and 3-methyladenine, and Brachybacterium is posi-
tively correlated with 4-hydroxybenzaldehyde, 3-methyladenine, and kynurenine. Some of
these putative resistance-associated bacteria showed positive/negative correlations with
other metabolites in KSG3 (Figure S6B).
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Figure 9. Correlation analysis between the root microbiome and metabolome at the late storage time
point reveals a distinct pattern in the two highly resistant genotypes vs. the susceptible genotype.
(A) Susceptible genotype (Sus_Ck); (B) resistant genotype, KSG4; and (C) resistant genotype, KSG6.
Data are mean ± standard error of 4 replicates (each replicate consists of samples obtained from two
roots). An ‘X’ sign inside the rectangular boxes in the heatmap indicates p < 0.05.

Analysis of the fungal microbiome in the roots of R and S lines identified fun-
gal genera predominantly associated with pathogenicity (Figure S7). We similarly per-
formed a correlation analysis between the fungal genera and root metabolites. In Sus_Ck
(Figure S7A), examples of significant positive correlations between fungi and metabolites
included Athelia and Cadophora, which were positively correlated with perillartine, and
Mucor with adenosine. Examples of negative correlations included Mucor with quinoline
and 3-phenylpropionitrile, as well as Athelia and Cadophora with kynurenine, aniline, etc.
Examples of negative correlations in the R line KSG2 (Figure S7B) included Athelia, which
was negatively correlated with LysoPC and sn-glycero-3-phosphocholine, and Lecanorales,
which was negatively correlated with Spd and quinoline. In KSG3 (Figure S7C), Athelia
was positively correlated with plumericin and Erysiphe was negatively correlated with
L-ascorbic acid, 5-phenylvaleric acid, prespatane, etc. In KSG4 (Figure S7D), Athelia was
positively correlated with plumericin. Negative correlations were observed between Athe-
lia and s-methylmethionine, as well as Coprinellus and L-pyroglutamic acid. In KSG6
(Figure S7E), Athelia was positively correlated with 17-estradiol, and Erysiphe was posi-
tively correlated with pyridoxal, isovanillic acid, etc. Examples of negative correlations in
KSG6 included Athelia, which was negatively correlated with crotonic acid and GABA.
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2.8. Resistant Lines Exhibited Lower Disease Symptoms vs. the Susceptible Line

The R lines showed significantly lower (2–5%) root surface area coverage with disease
symptoms in comparison to the Sus_Ck line, which exhibited 18% coverage of root surface
at the L time point (Figure 10; Table S6).
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Figure 10. Disease symptoms on sugar beet roots at the late storage time point under indoor storage
conditions. Representative samples showing surface coverage with fungal growth in the susceptible
genotype (Sus_Ck) and resistant genotypes (KSG2, KSG3, KSG4, and KSG6).

3. Discussion

The loss of sucrose during the post-harvest storage of sugar beets is due to root
respiration and can be increased by diseases [1–4,30,32,38]. Host plant genotype-specific
factors such as the microbiome and metabolome can also play a critical role in improving
the storability of sugar beet roots [29–31,39]. The plant microbiome plays a key role in
mitigating biotic and abiotic stresses and improving overall plant growth and fitness [40].
Therefore, identification of markers related to beneficial microbes and/or metabolites will
be key in selecting sugar beet cultivars exhibiting higher resistance to storage pathogens
pertinent to specific geographical areas to minimize sucrose loss. The current study was
undertaken to understand the association between the root microbiome and metabolites in
the context of greater resistance to post-harvest pathogens and better storability.

3.1. Microbial Diversity in the Resistant Lines and Their Putative Roles in Post-Harvest
Disease Resistance

The R and S lines showed temporal differences in bacterial phyla and genera, indicating
their putative roles during their prolonged storage time (~5 months) following harvest.
Higher relative abundances of the bacterial phyla Firmicutes and Desulfobacterota, especially
in the S line at the M time point (Figures 1 and S2A), were observed. These observations
are in line with earlier findings in sugar crops. Abiotic stresses such as waterlogged
conditions in sugarcane facilitated an increase in the populations of anaerobes belonging to
the bacterial phyla Firmicutes and Desulfobacterota. The phylum Firmicutes includes Gram-
positive bacteria such as Leuconostoc, Clostridium, Lactobacillus, and Weissella, which can
cause sucrose loss in sugar beet and sugarcane [41–43]. A higher abundance of Firmicutes,
predominantly represented by the order Lactobacillales, was observed in decaying sugar
beet root samples [42]. The results presented here, along with earlier findings, indicate that
specific members belonging to Firmicutes contribute to susceptibility in stored sugar beet
roots, adversely affecting their storability. A higher relative abundance of Desulfobacterota
in the R lines, KSG4 and KSG6, was observed at the L time point (Figure S2B). Higher
disease resistance in KSG4 and KSG6, and the known function of members belonging to
this phylum in resistance against pathogens, might indicate their role in improving the
resistance of sugar beet root against storage pathogens. Future characterization of specific
members of Desulfobacterota will determine their precise role in the post-harvest storage of
sugar beet roots. Another bacterial phylum, Patescibacteria, known for antagonistic effects
against fungal pathogens, has been isolated from diverse environments including plants
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and soils [44,45]. Their role in host plant resistance against pathogens varies depending
upon plant species, pathogens involved, and environmental conditions. Patescibacteria, as a
component of the plant microbiome, can interact with other microbes, thereby affecting
their populations and positively affecting plant defense responses. In a more recent study,
a higher abundance of Saccharimonadales (members of Patescibacteria) was observed in a
sugar beet cultivar resistant to root rot [45]. A higher abundance of Patescibacteria in the
R lines at the M time point (Figure S2) is in line with earlier findings indicating their
putative roles in activating early resistance responses against sugar beet storage pathogens.
Although no major differences in alpha and beta diversity among bacteria and fungi
were observed between the R and S lines, specific members of the microbial communities
may play key roles in disease resistance. Biomarker analysis revealed the presence of
bacterial taxa putatively associated with resistance against fungal pathogens, including
Micrococcaceae, Nesterenkonia, Paenarthrobacter, Brachybacterium, Micrococcales, Bacilli, etc.,
and these were highly abundant in the most resistant line, KSG6, at both M and L time
points (Figure 3), indicating their role in resistance during a prolonged storage period. A
highly positive correlation between Aeromicrobium and Nocardioides (Figure 5B), bacteria
genera with known functions in resisting fungal/bacterial pathogens [46,47], as well as
a higher abundance of Aeromicrobium in the R line KSG6, indicates their co-occurrence
and contribution towards resistance against sugar beet storage pathogens in a genotype-
specific manner. The bacterial genera putatively associated with resistance identified in this
study somehow vary among the R lines, as reported in some earlier studies. In sugar beet
clamps collected from Austria and Germany, bacterial genera highly represented in healthy
roots included Flavobacterium, Pseudarthrobacter, and Pseudomonas, whereas decaying roots
showed higher abundances of Lactobacillus, Gluconobacter, and Leuconostoc [29,31]. The
presence of Lactobacillus, Leuconostoc, and Gluconobacter was also reported in decaying
sugar beets collected from southern Idaho and southeastern Oregon in the U.S. [42]. This
suggests that a wide range of beneficial bacteria might play roles against post-harvest
storage pathogens and contribute to resistance in a sugar beet genotype-specific manner.
The mechanisms by which the microbiome affects plant disease resistance include the
production of metabolites that interact with other beneficial microbes and reconstitute
microbiome composition, modulate host defense pathways, and/or possess antimicrobial
activities [40]. Higher enrichment of the bacterial community associated with metabolic
pathways, such as the super pathway of L-tryptophan biosynthesis, was observed in the
R lines at the L time point when disease symptoms were at their maximum (Figure 4B).
A higher abundance of Trp-derived SMs (e.g., quinoline) in the R lines (Figure 6) and the
known roles of Trp/Trp-derived metabolites (discussed later) are indicative of the microbial
contribution towards overall resistance against sugar beet storage pathogens.

The S line showed a higher abundance of fungal taxa, namely Mucor, Athelia, Ascomycota-
related, Cadophora, Basidiomycota-related, etc. (Figure 1D), which are known to produce dis-
ease symptoms in sugar beet roots during post-harvest storage. It should be noted that the
storage temperatures recorded during the last few months of storage were below freezing
(Figure S5A) in this study. The prevalence of fungal pathogens reported in sugar beet piles
varies depending upon environmental parameters during storage seasons, geographical
area, outdoor/indoor storage, genotypes, etc. An earlier study investigating the role of
temperature on sugar beet post-harvest fungal pathogens during storage revealed the
prevalence of Botrytis cinerea at 8 ◦C, whereas members belonging to the fungal genera
Fusarium and Penicillium were dominant at 20 ◦C [30]. Several post-harvest pathogens,
including Botrytis cinerea, Athelia-like sp., Fusarium spp., Penicillium spp., and Mucor spp.,
have been reported in sugar beet growing areas in the U.S. [4,6]. Additional opportunistic
microbial communities associated with storage diseases were also reported in post-harvest
sugar beet roots as rotted lesions serve as entry points for the internal root tissues [42].
Fungal genera associated with decaying sugar beets collected from clamps in Austria
and Germany were predominantly represented by Candida and Penicillium [31]. Fungal
biomarkers identified in the rhizosphere and outer endosphere of harvested beets asso-
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ciated with better storability were Plectosphaerella and Vishniacozyma. Although a strong
negative correlation (−0.96) was observed between Ascomycota and an unclassified fungal
group, we were unable to resolve it at the genus level (Figure 5D).

3.2. Metabolic Signatures of Resistant Lines Contributing to Resistance

An untargeted metabolomics analysis of sugar beet roots showed significant changes
in metabolites between the R and S lines that varied with time and the intensity of disease
symptoms. Examples of metabolites that showed a higher relative abundance in the R
lines (vs. S) at the M time point (Figure 6A) included gamma-aminobutyric acid (GABA),
Gln, spermidine (Spd), pyridoxal 5-methoxytryptophol, ecgonine, kojic acid, etc. Some of
the metabolites that were higher in the R lines at the L time point and overlapped with M
included GABA, Gln/Gln-derivative, Spd, crotonic acid, etc. Other metabolites, such as
betaine, 5-methoxytrytophol, 3-(2-hydroxyethyl)indole, 4-methylpyrimidine, asparagine
(Asn), crotonic acid, pyroglutamic acid (PGA), etc., were higher in the R lines at the L
time point (Figure 6B). Pathway enrichment analysis revealed differentially regulated
metabolites predominantly associated with Arg and Pro metabolism, followed by Ala, Asp,
and Glu metabolism, during the M storage time point (Figure 7A). A shift in metabolism
during the L storage time point associated with beta-alanine and butanoate metabolism
(Figure 7B) indicated the temporal regulation of metabolism in the roots and the possible
involvement of beta-alanine/butanoate metabolism-associated metabolites, such as 4-
aminobutanoate, acetoacetate, Spd, and uracil, in resistance in the R lines (vs. S), which
exhibited few disease symptoms (Figure 10).

Amino acids (AAs) in plants play critical roles in the synthesis of proteins and sec-
ondary metabolites (SMs) associated with growth and tolerance to biotic/abiotic
stresses [48,49]. Besides serving as reserves for nitrogen (N) and (C), free AAs also act
as osmoregulants in plants [50]. This is especially true in the context of water loss by sugar
beet roots during post-harvest storage, which could positively affect root respiration and
loss of sucrose [32]. Higher abundances of Gln/Gln-derivative, GABA, Spd (triamine), and
other related AAs were observed in the R lines at the M and L time points (Figure 6B) when
the disease pressure was at its maximum (Figure 10). A higher amount of Gln in sugar
beet genotypes showing greater resistance to post-harvest pathogens [39] and the data pre-
sented here indicate a protective role of these metabolites against post-harvest pathogens.
Glutamine represents a major portion of the alpha-amino N in sugar beet roots and acts
as a major substrate to produce the majority of the amino acids in plants [39,51]. The role
of Gln in plant disease resistance has been shown partly through its interaction with the
salicylic acid pathway, triggering plant immunity [51,52]. Besides Glu/Gln, Arg also serves
as a reservoir of N in the roots, feeding the polyamine (PA) biosynthetic pathway and
producing the non-protein amino acid (AA), GABA, from the diamine putrescine. Gamma-
aminobutyric acid is also synthesized directly from glutamate (Glu) through glutamate
decarboxylase [53] and can directly enter the tricarboxylic acid (TCA) cycle, contributing to
energy production. The role of GABA linking to the TCA cycle might be highly relevant
to the current context due to continued root respiration and the production of other SMs
to combat pathogens during prolonged storage conditions. Gamma-aminobutyric acid
has been shown to confer biotic/abiotic stress tolerance in plants through its antioxidant
properties and interaction with other signaling molecules such as Ca2+, H2O2, polyamines
(PAs), salicylic acid, nitric oxide, etc. [54,55]. The protective role of the PA and Spd against
pathogens from the host plant’s perspective depends upon the direct regulation of defense-
related genes, as Spd conjugates possess antimicrobial properties and the catabolism of
Spd produces H2O2, which is involved in defense signaling [56,57]. Some of our obser-
vations on higher amounts of specific AAs in the roots of sugar beet genotypes used in
this study and the higher resistance to storage and fungal pathogens overlap with earlier
findings in sugar beet [39]. The relationship between aromatic amino acids (Trp, Tyr, and
Phe) and greater resistance to post-harvest diseases in sugar beet genotypes has been
reported earlier [39]. Ferulic acid, a compound derived from Phe through phenylpropanoid
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metabolism, was higher in the R lines (vs. S) at the L time point (Figure 6B). Ferulic acid has
been demonstrated to improve the post-harvest storage quality of crops through wound
healing, thereby improving cell wall rigidity, inhibiting pathogens (antimicrobial prop-
erties), reducing water loss, and increasing antioxidant potential [58–60]. Similarly, the
alkaloid quinoline (derived from Trp), known to possess both antifungal and antibacterial
properties [61], was higher in the R lines (vs. S) at this time point. The data presented
here further delineate putative mechanisms through which aromatic AAs might confer
resistance against post-harvest pathogens. This might also suggest common strategies and
sugar beet genotype-specific biochemical traits associated with the better storability of
roots. However, free AAs are considered impurities in sugar beet roots, since they nega-
tively affect sucrose purification during industrial processing [62]; however, there may be a
threshold for specific AAs that are essential for disease resistance during storage. Taken into
consideration, the data presented from this study and earlier reports indicate the critical
roles of AAs involved in the production of specialized N-containing SMs contributing to
resistance against pathogens and other abiotic stresses during post-harvest storage.

Among other compounds, PGA, an organic acid, showed a higher abundance in the
R lines KSG2 and KSG6 (vs. S) at the L storage time point (Figure 6B). Pyroglutamic
acid is produced either from Glu or the degradation of glutathione [63]. Besides its direct
antifungal and antibacterial properties [64], PGA has also been shown to activate plant
defense pathways associated with improving antioxidant reserves [65]. Considering the
higher abundance of PGA in the R lines in this study, as well as an earlier report in sugar
beets [39], PGA may have a potential role against post-harvest pathogens. Several other
compounds, such as betaine, prespatane, S-methylmethionine, etc., which were higher in
the R lines, are not fully understood with regards to their role in disease resistance in sugar
beets. Therefore, further studies will be required to understand their precise contributions
towards resistance against fungal pathogens.

Global metabolite analysis (Figure 6) of the roots of R and S lines primarily represented
metabolites originating from the plant. Distinguishing metabolites that are exclusively of
microbial origin vs. plants is challenging as a majority of these metabolites are common
to both plants and microbes. Examples of metabolites that were exclusively of microbial
origin include citrinin, gyromitrin, kojic acid, ecgonine methyl ester, aflatoxin, patulin, etc.
Some of these metabolites have been shown to have beneficial roles against pathogens.
The alkaloid ecgonine methyl ester has been shown to be produced by Bacillus subtilis [66].
The role of this alkaloid in biotic stress alleviation in plants, its higher abundance, and the
higher relative abundance of Bacillus sp. in the R lines might indicate its putative role in
resistance against fungal pathogens. The mycotoxins, aflatoxin and patulin, which were
detected in some samples, are known to be produced by Aspergillus flavus and Penicillium
spp., respectively. Interestingly, both pathogens were either undetected or insignificant
in the R and S lines at M and L time points. Whether these mycotoxins can be produced
by other microbes is unknown. No direct meaningful correlations could be obtained from
the correlation analysis of these mycotoxins and related fungal genera; therefore, these
relationships could not be resolved.

3.3. Correlation Between Root Metabolites and the Microbiome Indicates the Role of Host Genotype
in Resistance

The correlation between sugar beet root metabolites and root bacteria known for
their roles in resistance/susceptibility provided greater insights on the regulation of the
microbiome by host genotype. Some specific examples include a positive correlation be-
tween Lactobacillus (susceptibility related) and metabolites such as 17-estradiol, estrone,
prespatane, etc. On the other hand, Ralstonia (susceptibility related) was negatively cor-
related with metabolites such as crotonic acid, ecgonine methyl ester, etc. Examples of
positive correlations between bacteria (resistance related) and metabolites in the R lines
(Figures 9 and S6) included Nesterenkonia with kynurenine (in KSG6) and methylsuccinic
acid (in KSG3 and KSG6), and Nesterenkonia with icariin (in KSG2 and KSG6). Paenarthrobac-
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ter, putatively associated with resistance, was positively correlated with metabolites includ-
ing LysoPC, sn-glycero-3-phosphocholine, and acetoacetate (in KSG6, Figure 9C). In KSG4
(Figure 9B), Erythrobacteraceae was positively correlated with adenosine and 5-phenylvaleric
acid. Kynurenine (KYN), produced from Trp, serves as a direct precursor for kynurenic
acid, anthranilic acid, 3-hydroxykynurenine (3 − HK), and other downstream metabolites
such as quinoline [66]. The role of KYN in plants has been demonstrated to be as an auxin
suppressant, negatively affecting root growth. Although the relationship between KYN
and the gut microbiome in human health has been demonstrated [67], KYN’s effect on the
microbiome composition in plants and any role in sugar beet disease resistance has not been
investigated. Similarly, icariin, an isopentenyl flavonoid, has been demonstrated to increase
beneficial bacteria in mammalian guts [68]. A higher abundance of metabolites such as KYN
and icariin in the R lines at the L time point, along with a higher abundance of beneficial
bacteria (disease resistance) and greater resistance against fungal pathogens in the R lines,
might highlight their putative roles in resistance. Associations between other compounds,
such crotonic acid, methylsuccinic acid, LysoPC, and sn-glycero-3-phosphocholine, and
their bacterial counterparts are not fully understood at this moment. Though there are
overlaps between specific plant metabolites and resistance-associated bacteria in specific
R lines, there are instances where the resistance-related bacteria correlated with different
metabolites in the other R lines and vice versa. Correlation analysis between root metabo-
lites and the fungal microbiome identified key root metabolites putatively associated with
resistance against fungal pathogens in the R lines (Figure S7). Several metabolites such as
s-methylmethionine, LysoPC, sn-glycero-3-phosphocholine, crotonic acid, and GABA iden-
tified in the R lines showed a negative correlation with Athelia. Other fungal pathogens such
as Erysiphe showed a negative correlation with L-ascorbic acid, 5-phenylvaleric acid, pres-
patane, etc., as well as Coprinellus with L-pyroglutamic acid. Some of the resistance-related
metabolites, such as LysoPC, sn-glycero-3-phosphocholine, crotonic acid, and GABA, over-
lapped with the bacteriome data, indicating possible mechanisms through which these
metabolites may control fungal pathogens. Overall, these data suggest that the root bio-
chemical environment may control the relative abundance of beneficial bacterial species in
a genotype-specific manner. The data presented here, along with earlier findings, shed light
on the plant metabolites that are associated with a higher relative abundance of specific
beneficial bacteria and plant disease resistance [69]. Overall, this study provides insights
into how the dynamics of microbiomes and metabolites can contribute to improving the
storability of sugar beets. Future studies targeting the functional roles of key microbiomes
and metabolites, as well as specific responses to distinct components, will warrant an
understanding of underlying mechanisms important for retaining the post-harvest health
of sugar beets.

4. Materials and Methods
4.1. Storage Conditions of Sugar Beet Roots, Evaluation of Roots, and Sample Collection During
Prolonged Indoor Storage

Sugar beet roots of resistant [mutational breeding lines: KSG2 (KEMS06), KSG3
(KEMS08), KSG4 (KEMS08-600); genetic selection from Polish background: KSG6 (KPS25)]
and susceptible [Sus_Ck; commercial variety] lines to post-harvest storage-related diseases
were stored in an indoor commercial sugar beet storage facility at Paul, ID (USA) [34–36].
The indoor post-harvest storage temperature and relative humidity from mid-Oct to mid-
March are presented in Figure S8. Sugar beet roots were weighed, evaluated for disease
symptoms (percent surface coverage of roots with pathogen growth), and root samples
were collected from both R and S lines at M (end of December; ~3 months after harvest)
and L storage (mid-March; ~5 months after harvest) time points for microbiome and
metabolite analyses. Root samples from each genotype were collected in 4 replicates
at the M and L time points and each replicate consisted of samples collected from two
sugar beet roots. Root samples (10 roots/genotype) were evaluated at both M and L time
points for percent visual surface coverage of roots with disease symptoms out of total root
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surface area. Following sample collections, root tissues (fresh weight) were flash-frozen in
liquid N and stored at −80 ◦C until further processing for microbiome and metabolome
analyses. Root samples were pulverized under ultra-low temperatures using Geno/Grinder
2010 (SPEX SamplePrep, Metuchen, NJ, USA) before extraction of genomic DNA (gDNA)
and metabolites.

4.2. Genomic DNA Extraction, PCR Amplification, and 16S rRNA and ITS Sequencing

Genomic DNA (gDNA) from sugar beet root samples collected at mid and late storage
stages were extracted using the Plant/Fungi DNA Isolation Kit (Norgen Biotek Corp.,
Thorold, ON, Canada) according to the manufacturer’s protocol and stored at −20 ◦C
until further use. The extracted DNA was used for PCR amplification of the V3–V4
hypervariable region using the 338F_5′-ACTCCTACGGGAGGCAGCAG-3′ and 806R_5′-
GGACTACHVGGGTWTCTAAT-3′ primer pairs for 16S rRNA amplification [70]. The
ITS2 region of the fungal rRNA gene’s small subunit was amplified using the primers
ITS7: F_5′-GTGARTCATCGAATCTTTG-3′ and ITS4: R_5′-TCCTCCGCTTATTGATATGC-
3′ [71]. The 5′ ends of the primers were tagged with sample-specific indexing barcodes and
universal adapters. Polymerase chain reaction (PCR) was performed in a total reaction
volume of 25 µL containing 25 ng of template DNA per reaction. The PCR conditions
included: initial denaturation at 98 ◦C for 30 s; 32 cycles of denaturation at 98 ◦C for
10 s (35 cycles for ITS amplification), annealing at 54 ◦C for 30 s, and extension at 72 ◦C
for 45 s; followed by a final extension step at 72 ◦C for 10 min. The PCR products were
confirmed through 2% agarose gel electrophoresis. The PCR products were then purified
using AMPure XT beads (Beckman Coulter Genomics, Danvers, MA, USA) and quantified
using a Qubit (Invitrogen, Waltham, MA, USA) system. The amplicon pools were prepared
for sequencing. The size and quantity of the amplicon libraries were measured using an
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) and a Library Quantification
Kit for Illumina (Kapa Biosciences, Woburn, MA, USA), respectively. The libraries were
sequenced on a NovaSeq PE250 platform with paired-end reads (2 × 250 bp) according to
the manufacturer’s protocols (LC Sciences, Houston, TX, USA).

4.3. Data Analysis

The metagenomic reads obtained from the 16S sequencing were processed using
the microbiome data analysis pipeline from LC Sciences (Houston, TX, USA). The work-
flow included: (1) assessment of read qualities by removing short sequences (<150 bp)
and ambiguous base calls using a maximum expected error threshold of 1.0, (2) classi-
fying unique sequences after removing sequencing/PCR errors and chimera sequences,
(3) dereplication, through which all identical sequences were combined into unique se-
quence reads, and (4) assignment of a zero-radius operational taxonomic unit (zOTU).
Taxonomic classification of final zOTUs were performed using BLASTn against the NCBI
(www.ncbi.nlm.nih.gov) database.

Paired-end reads generated from sequencing were assigned to specific samples based
on unique barcodes, followed by removing the barcode and primer sequences. The reads
were then merged using FLASH. Specific filtering conditions were used on raw reads to
obtain high-quality clean tags using fqtrim software (v0.94). Chimeric sequences were
filtered using Vsearch software (v2.3.4). Dereplication was performed using DADA2,
resulting in feature sequences being obtained. Sequences exhibiting ≥97% similarity
were assigned to the same OTUs. Representative sequences were chosen for each OTU.
Alpha diversity and beta diversity were calculated by normalizing to the same sequences
randomly. Through the SILVA (release 132) classifier, feature abundance was normalized
using relative abundance for each sample. To measure the complexity of species diversity
in each sample, alpha diversity was applied using indices, observed_OTUs, and Shannon.
These indices were measured using QIIME2. The zOTU abundance tables were used to
estimate beta diversity using principal coordinate analysis (PCoA). This helped to examine
differences among samples regarding species complexity. Cluster analysis was performed
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using QIIME2 (v1.8.0). The graphs were constructed using the R package (v3.5.2). Blast was
used for sequence alignment, and the feature sequences were annotated using the SILVA
database (Release 138; 2019) for each representative sequence.

To identify differentially abundant families among treatments for potential
biomarker/s [72], linear discriminant analysis effect size (LEfSe) was used. The rela-
tive abundance of taxonomic features obtained through the greengenes 13_8 database
was then used as input for the analysis of LEfSe using the huttenhower server (https:
//huttenhower.sph.harvard.edu/galaxy/, accessed on 20 April 2023). The default LDA
effect size alpha value (p = 0.05) and LDA score (2.0) settings were used to identify sig-
nificant differences among groups. The Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) algorithm [73] was used for functional
assignment of microbial communities. The greengenes 13_8 database was used to cluster
closed reference OTUs and the resulting ‘.biom’ files were used as inputs for PICRUSt
(http://huttenhower.sph.harvard.edu/galaxy/, accessed on 20 April 2023). After normal-
ization of the input OTU table, functional predictions of the metagenome were performed
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [74,75] as a ref-
erence. Co-occurrence between bacterial communities was determined using the Sparse
Correlations for Compositional data (SparCC) rank correlation coefficients (Python 2.6.1).
From the original dataset, a random simulation of 100 datasets was created. Pseudo-p-
values were calculated by estimating the number of the dataset that produced the same
correlation as the real data [76].

The Illumina MiSeq platform was used for ITS sequencing according to the manufac-
turer’s recommendations (LC-Bio). Paired-end reads were assigned to the samples based
on their unique barcodes. The raw reads were processed by removing the barcodes and
primer sequences. Paired-end reads were merged using PEAR (v1.2.8). Quality filtering
of the raw tags was performed using specific filtering conditions to obtain high-quality
clean tags according to fqtrim (version 0.94). Chimeric sequences were filtered using
Vsearch (v2.3.4). Sequences with ≥97% similarity were assigned to the same operational
taxonomic units (OTUs) using Vsearch (version 2.3.4). Representative sequences were
chosen for each OTU following the assignment of taxonomic data to each representative se-
quence using the RDP (Ribosomal Database Project; 2019 version) classifier. The differences
between dominant species in different groups and multiple sequence alignments were
conducted using the mafft software (version 7.310) to obtain phylogenetic relationships
between different OTUs. The abundance information of OTUs was normalized using a
standard sequence number corresponding to the sample with the least sequences. Alpha
diversity analysis to analyze the complexity of species diversity for a given sample was per-
formed using observed_OTUs and Shannon through QIIME (version 1.8.0). Beta diversity
analysis to evaluate sample differences with regard to species complexity was calculated
using Principal Coordinates Analysis (PCoA) and cluster analysis using QIIME software
(version 1.8.0).

4.4. Untargeted Metabolome Analysis

Approximately 50 mg of finely ground sugar beet root tissues (fresh weight) were
extracted in 800 µL of 80% methanol. The samples were vortexed, followed by grinding
at 65 HZ for 180 s and sonicating at 4 ◦C for 30 min. This was followed by incubation at
−40 ◦C for 1 h, vortexing for 30 s, and incubation at 4 ◦C for 0.5 h. The samples were then
centrifuged at 12,000 rpm for 15 min at 4 ◦C. The supernatants were transferred to separate
centrifuge tubes and incubated at −40 ◦C for 1 h. This was followed by centrifugation
at 12,000 rpm for 15 min at 4 ◦C. A 200 µL volume of the supernatant from each sample
was mixed with 5 µL of the internal standard (0.14 mg/mL 2-chlorophenyl alanine) and
transferred to the injection vial.

Metabolites were analyzed using an LC-MS (Waters, UPLC; Thermo, Q Exactive)
system with an attached Acquity UPLC HSS T3 (2.1 × 100 mm; 1.8 µm) chromatographic
column. The chromatographic separation conditions were column temperature: 40 ◦C; flow
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rate: 0.300 mL/min; mobile phase composition A: water (0.05% formic acid), B: acetonitrile;
injection volume: 5 µL; autosampler temperature: 4 ◦C. The mobile phase gradient elution
program is presented in Table 2 below.

Table 2. Mobile phase gradient elution program for untargeted metabolomics analysis.

Time (min) Flow Rate (mL/min) A (%) B (%)

0.00 0.30 95 5
1.00 0.30 95 5
12.50 0.30 5 95
13.50 0.30 5 95
13.60 0.30 95 5
16.00 0.30 95 5

Mass spectrometry detection parameters for electrospray ionization (ESI; positive ion
mode) included a heater temperature of 300 ◦C; sheath gas flow rate of 45 arb; auxiliary gas
flow rate of 15 arb; sweep gas flow rate of 1arb; spray voltage of 3.0 KV; Capillary Temp of
350 ◦C; and S-Lens RF Level of 30%. The scan mode parameters were first-level full scan
(Full Scan, m/z 70~1050) and data-dependent two-stage mass spectrometry scan (dd-MS2,
TopN = 10). The resolutions were 70,000 (MS1) and 17,500 (MS2).

The raw data were converted to the mzXML format using ProteoWizard and processed
using an in-house (Lifeasible; Shirley, NY, USA) program developed using R. XCMS was
used for peak detection, extraction, alignment, and integration. An in-house MS2 database
(LifeasibleDB) was applied for metabolite annotation. The cutoff for annotation was set at
0.3. The raw files (.raw) were then imported into Compound Discoverer3.1 (CD) software
for spectral processing and a database search was carried out in order to obtain qualitative
and quantitative results for the detected metabolites. This was followed by quality control
to ensure the accuracy and reliability of the data. Multivariate analysis including principal
component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) was
performed to detect any differences in metabolites among different groups. Hierarchical
clustering (HCA) and metabolite correlation analysis revealed relationships between sam-
ples and metabolites. The biological significance of metabolites was identified through
enrichment of metabolites with specific metabolic pathways. Metabolites were visualized
using the ‘pheatmap’ package [77] in R (version 1.0.12) with default parameters except for
scale = “row” (https://CRAN.R-project.org/package=pheatmap, accessed on 27 January
2024). Correlation analyses were performed using the cor.test function in R.

4.5. Carbohydrate Analysis

Carbohydrate extractions were performed according to the method described ear-
lier [78]. Approximately 100 mg (fresh weight) of finely ground sugar beet root tissues
(stored at −80 ◦C) were mixed with 1 mL of 80% absolute ethanol in 1.5 mL centrifuge tubes,
followed by heating in a water bath at 65 ◦C for 30 min. The samples were then cooled for
5 min at room temperature, vortexed at medium speed on a multi-tube vortexer (VX-2500)
for 2 min, and centrifuged at 13,000 rpm for 8 min. The supernatants were filtered using 0.45
um nylon syringe filters fitted in 1.5 mL microfuge tubes. The filtrates (extracts) were stored
at −80 ◦C until analysis. Five soluble carbohydrates were analyzed using an AB Sciex 5600
triple time-of-flight mass spectrometer system (Framingham, MA, USA) according to the
method described earlier [79]. A Waters (Milford, MA, USA) Acquity UPLC BEH Amide
(2.1 × 150 mm, 1.7 µm) column coupled with a Waters Acquity BEH amide vanguard
pre-column (2.1 × 5 mm, 1.7 µm) was used to separate carbohydrates using water with
0.1% ammonium hydroxide (A) and acetonitrile with 0.1% ammonium hydroxide (B) as the
mobile phase. The following gradient was used: 0–3 min linear gradient 0–50% B, 3–6 min
hold at 50% B, 6–7 min 50–0% B, and 7–12 min hold at 0% B at a constant flow rate of
0.2 mL/min and at a column temperature of 40 ◦C. The analysis was operated under nega-
tive electrospray ionization conditions with a TOF acquisition mass range of 150–540 m/z.

https://CRAN.R-project.org/package=pheatmap
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Data acquisition was performed using Sciex Analyst software (version TF 1.8.1) and data
analysis was performed in Sciex MultiQuant software (v 3.0). For absolute quantification, a
7-point external standard curve within a range of 2–32 µg/mL was used. Prior to LC-MS
analysis, 13C6-sucrose (10 µg/mL) and 13C6-glucose (10 µg/mL) were added to each LC-
MS sample as internal standards. Quantification of glucose and galactose was conducted
together as the peaks of glucose and galactose did not resolve well. Thus, the areas and
concentrations of each carbohydrate were added to obtain a combined standard curve.
For the LC-MS analysis of glucose, fructose, galactose, and raffinose, the extracts were
diluted twenty-fold. Since the concentration of sucrose was higher compared to the other
carbohydrates, the analysis of sucrose was performed separately on a 1500-fold diluted
extract using the same LC-MS method described above.

4.6. Statistical Analysis

Statistical analysis was performed using ‘R’ (https://www.R-project.org, accessed on
27 January 2024). Statistical significance reported for any analysis is defined as p < 0.05.

4.7. Data Availability

The raw data resulting from the microbiome sequencing (BioProject ID: PRJNA1163729)
were submitted to the NCBI SRA database.

5. Conclusions

Through this work, we demonstrate sugar beet genotype-specific root microbiome-
related traits that potentially play an important role in root resistance against pathogens
during prolonged post-harvest indoor storage. We further demonstrate the putative role of
root metabolites (e.g., N-containing SMs) that may control relative abundances of specific
beneficial microbes that potentially contribute to resistance against storage pathogens. The
knowledge obtained on the roles of microbiome/metabolites/genotypes in improving
post-harvest storage quality will be useful for future breeding strategies to generate sugar
beet cultivars with improved storage performance, thereby minimizing sugar loss and
increasing profits for the growers. The prediction of microbial functions from 16S and ITS
sequencing and the putative role of metabolites in improved post-harvest storage presented
in this study are approximations and will require experimental validation in the future.
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