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Abstract Many agricultural areas of the western United States and other parts of the world practice
irrigation using a variety of irrigation methods. Maps of irrigation methods are needed but existing technologies
are often unable to distinguish between different irrigation methods when they co‐exist on the same landscape.
In this study, we develop a deep learning irrigation methods mapping tool for broad scale application. The
technique uses a U‐Net model trained on Landsat 5‐ and 8‐derived input images. Training data consisted in
irrigation method classified as Flood, Sprinkler or Other on agricultural fields from the Utah Water Related
Land Use data set and additional labeling in selected areas of southern Idaho. An ensemble of 10 trained models
had an overall accuracy of 0.78. Precision for Flood, Sprinkler and Other were 0.73, 0.82, and 0.80 while recall
values were 0.75, 0.74, and 0.84 respectively. Model performance was generally stable throughout the training
years but varied by areas. The best performance was obtained in regions with uniform irrigation method across
large patches while small fields of contrasting irrigation method with their surroundings were inadequately
predicted. Model prediction in an irrigated watershed of southern Idaho for 2006, 2011, 2013, and 2016 were
consistent with previously published survey data. This methodology provides a tool for water resource
managers to estimate irrigation methods in agricultural watersheds where natural precipitation is low during the
growing season and irrigation methods include center pivots, wheel lines and flood irrigation.

Plain Language Summary Many agricultural areas of the western United States practice irrigation
using a variety of irrigation methods. Irrigation methods can be classified into 3 main groups: surface (or flood),
sprinkler systems and micro‐irrigation systems. Flood and sprinkler irrigation account for 90% of irrigated areas
in the United States but impact water resources differently. Flood irrigation has been associated with many
adverse effects on water quality whereas sprinkler systems are promoted as improved irrigation alternatives to
preserve water quantity and quality. Maps of irrigation methods are needed to improve assessment of irrigation
methods on water quantity and quality. In this study, we develop an irrigation methods mapping tool by training
a deep learning model on publicly available satellite imagery. The model was trained on the UtahWater Related
Land Use data set and additional data from southern Idaho. The trained model correctly predicted irrigation
method over 78% of the test area. This methodology provides a tool for water resource managers to estimate
irrigation methods in agricultural watersheds where natural precipitation is low during the growing season and
irrigation methods include center pivots, wheel lines and flood irrigation.

1. Introduction
Global demand for freshwater has increased 6‐fold over the past 100 years (Wada et al., 2016) and continues to
increase at a rate of 1% per year (Food and Agriculture Organization of the United Nations (FAO), 2018).
Population growth, economic development and changing consumption patterns are expected to further expand
future demand for freshwater (UNESCO, 2018). In the United States, irrigation withdraws the largest share of
freshwater resources (118 of 281 billion gallons per day) in 2015 (Dieter et al., 2018). Irrigation increases both
quantity and quality of agricultural production but can adversely impact water availability. One of the main
factors influencing water availability in irrigated areas is the method of on‐farm irrigation used. Irrigation
methods can be classified into three broad categories: surface irrigation, sprinkler irrigation and drip irrigation
(Brouwer et al., 1988). Surface irrigation involves the delivery of water to the plant by gravity. Common surface
irrigation methods include flood or basin irrigation whereby water is allowed to pond over the irrigated field and
furrow irrigation in which water is conveyed through regularly spaced small channels prepared in the field. With
sprinkler irrigation, water is pumped through pipes and sprayed to the field via nozzles under high pressure while
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drip irrigation or micro‐irrigation involves the application of water to individual plants with nozzles under low
pressure. Of the three categories of irrigation methods, surface and sprinkler irrigation are the most common,
making up 90% of irrigation area in the U.S. (USDA‐NASS, 2019).

Many studies have compared surface and sprinkler irrigation with respect to their impacts on soil, air, and water
resources as well as crop performance. Results frommost of these studies demonstrate the superiority of sprinkler
systems over surface irrigation due to better control of water distribution. A study of root distribution by Lv
et al. (2010) under different irrigation systems revealed a shallower rooting depth under sprinkler irrigation
compared to border irrigation (a form of surface irrigation), suggestive of water deficit conditions under the latter
irrigation method. Compared to furrow irrigation, sprinkler irrigation was also found beneficial for visual quality
of potato tubers (Trout et al., 1994) owing to reduced water stress, improved nitrogen management and evapo-
rative cooling under sprinkler irrigation. Ippolito et al. (2019) reported alterations in soil phosphorus (P) dynamics
with furrow irrigation as reduced conditions occurring on frequently flooded fields produced greater inorganic P
and plant‐extractable P compared to sprinkler‐irrigated fields. Biogeochemical processes enabled by transient
water logging conditions under flood irrigation were found to enhance emission of nitrous oxide (N2O) when
compared to sprinkler irrigation (Franco‐Luesma et al., 2020). Farahani et al. (2020) documented reductions as
high as 37% for nitrates and 42% for dissolved P in subsurface drainage water under sprinkler irrigation compared
to flood and furrow irrigation. More evidence of increased leaching under flood irrigation compared to sprinkler
irrigation was provided by other solute transport tracing methods (Nachabe et al., 1999) and modeling approaches
(Naghedifar et al., 2018). Some benefits of flood irrigation over sprinkler irrigation on sugarbeet quality has been
reported by Eckhoff and Bergman (2001) but at the expense of increased nitrate leaching to groundwater.

In the western U.S and other dry regions of the world, a variety of irrigation methods co‐exist on the landscape. In
an irrigated watershed of southern Idaho, Bjorneberg et al. (2020) found that the proportion of the agricultural
land irrigated with sprinklers increased from 46% in 2006 to 59% in 2016 as furrow irrigated fields are converted
to sprinkler systems. Evaluating the effect of different irrigation methods on basin‐scale processes requires ac-
curate information on the location and distribution of the types of irrigation used on‐farm across the irrigated
landscape. Currently available irrigation mapping products (Pervez & Brown, 2010; Salmon et al., 2015; Siebert
et al., 2005, 2015; Xie et al., 2021) distinguish between irrigated and non‐irrigated areas at various spatial scales
without explicit information on the methods of irrigation. Regional‐scale irrigation mapping from remotely
sensed data has been the object of many studies. Methodologies developed in some studies (Bazzi et al., 2019;
Boken et al., 2004; Thenkabail et al., 2005) aim to identify irrigated fields in regions where both irrigation and
rain‐fed agriculture co‐exist. Efforts have been made to identify center pivot irrigation systems using computer
vision and deep learning techniques (de Albuquerque et al., 2020; Rodrigues et al., 2020; Saraiva et al., 2020;
Tang et al., 2021; C. X. Zhang et al., 2018). These techniques take advantage of the circular patterns often
associated with center pivot irrigation systems and are sufficient in regions where only this irrigation method is
used on agricultural fields. Nevertheless, few techniques currently exist to distinguish between various irrigation
methods and accurately map irrigation methods in regions where multiple irrigation types co‐exist on the
landscape. Raei et al. (2022) developed a deep learning approach based on the U‐Net architecture to segment
multiple irrigation method classes including many sprinkler types, surface irrigation, urban areas and background
areas from high‐resolution (1‐m) aerial images. The proposed approach represents an advance towards an irri-
gation methods mapping tool but its development and evaluation was limited in geographic scope (2 counties in
southern Idaho) and relied on input images that may not be widely available in space and time. In the U.S. for
example, the U.S. Geological Survey provides estimates of the spatial extent and water withdrawals associated
with different irrigation methods but this information comes from survey data (Painter et al., 2021). An irrigation
methods mapping approach that is accurate and responsive to yearly changes in irrigation methods is needed.

Advances in deep learning have enabled the development of a new generation of irrigation mapping and clas-
sification tools using remotely sensed spatial data. Convolutional neural networks (CNNs) are a form of deep
learning method originally developed in the field of computer vision for image segmentation and classification
(Chauhan et al., 2018; Fukushima, 1979). In recent years, CNNs have been growing in popularity for spatial data
analysis (Hoeser & Kuenzer, 2020; Huang et al., 2018) owing to their ability to reveal more complex and hi-
erarchical relationships and thus yield better results compared to shallow neural networks and traditional clas-
sification approaches (Kattenborn et al., 2021). In the context of irrigation mapping, Saraiva et al. (2020) used a
U‐Net network architecture, a type of fully convolutional neural network (FCNN), to classify center pivot irri-
gation with a precision of 99% and a recall (fraction of all center pivots correctly identified as such) of 88% in

Water Resources Research 10.1029/2023WR036155

NOUWAKPO ET AL. 2 of 16

 19447973, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036155 by N

ational A
griculture L

ibrary, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Brazil. Using a similar network architecture, Colligan et al. (2022) mapped irrigated areas in the US state of
Montana with an overall accuracy of 99% and a precision of 0.85. Raei et al. (2022) achieved performance metrics
ranging from 70% to 86% on test data with their proposed U‐Net approach to classify irrigation methods. The
objective of this study was to develop the first approach to identify and classify irrigation methods in an area
where sprinkler and surface irrigation methods co‐exist. We propose a deep learning approach using a U‐Net
architecture taking as input publicly available remote sensing data. The proposed model was trained using the
Water Related Land Use (WRLU) data set from the state of Utah (https://gis.utah.gov/data/planning/water‐
related‐land/). The ability of the trained model to identify irrigation methods within and outside of Utah was also
evaluated.

2. Materials and Methods
2.1. Study Area and Common Irrigation Methods

This study utilizes the Utah WRLU data set to develop and train the deep learning model for irrigation methods
mapping. Utah covers an area of 219,807 Km2 and spans longitudes 109°W to 114°W and latitudes 37°N to 42°N
(Figure 1). Elevation in the state ranges from 664 m at Beaver Damwash in the southeast to 4,123 m at the summit
of King's Peak in the Uinta mountains. Farming accounts for 43,301 Km2 of the land in the state. Major agri-
cultural products in the state include hay, alfalfa, small grains, corn, livestock, and dairy products (USDA‐
NASS, 2021). Overall 18% of the agricultural land is irrigated in Utah compared to 25% nationwide (USDA‐
NASS, 2019). Irrigation is more common on moderately sized farms (20–202 ha) in Utah compared to the na-
tional average (25% in Utah vs. 13% nationwide) (USDA‐NASS, 2019).

The irrigation methods mapping technique developed in this study was tested outside of the state of Utah in an
irrigated region in southern Idaho (Figure 1b). The bounding box of the region spans 114.96°W, 42.40°N on the
southwest corner to 114.02°W, 42.66°N to the northeast. This test region is within the Upper Snake Rock (USR)
watershed (Hydrologic Unit Code 17040212), a 6,300 km2 watershed in south‐central Idaho with the Snake River
as its major river. Annual precipitation in the region is 250 mm and multiple irrigation projects supply as much as
five times the natural annual precipitation to support a thriving agricultural industry. Irrigation water for most of
the agricultural land within the test region is supplied by the Twin Falls Canal Company (TFCC) irrigation
project. TFCC will therefore be used in this paper to refer to the Idaho test region. Land use within the USR
watershed is 37% irrigated agriculture, <1% dryland agriculture, and 60% rangeland and forest land with the
remainder urban. Overall, 46% of the agricultural land is irrigated in the state of Idaho with nearly 80% of the land
on farms greater than 809 ha in size receiving irrigation water. Irrigation methods used on farms in TFCC are
similar to those encountered in the state of Utah.

2.2. Description of the Training Data Set Utah Water Related Land Use Data

The Utah WRLU data set was used to train and validate the proposed model. The WRLU data set has been
collected and maintained by the Utah Division of Water Resources since 1967 to help develop a State Water Plan.
The data set includes information on the types and extent of irrigated crops, the irrigation method as well as
information concerning dry agriculture, wetlands, open water, and urban areas (Utah‐DNR, 2022). WRLU data
for years 2003–2021 were used for this study but no digitized WRLU data was available for 2016 so this year was
not used in the training or evaluation. For each year, the WRLU data set consisted in a shapefile of field
boundaries with information on crop, irrigation and other land use attributes. For this study, field boundaries
associated with agricultural areas were selected (Figure 1c). Irrigation methods for these fields were classified in
the data set as flood, sprinkler, drip, dry crop or sub‐irrigated. Sprinkler systems can be divided into two broad
categories: (a) periodic‐move and fixed systems in which the sprinklers remain at a fixed position and (b)
continuous move systems in which the sprinklers are automatically moved in a circular or straight path (USDA‐
NRCS, 2016). The most common sprinkler systems in the region are wheel lines which are periodic‐move
systems and center pivots which are continuous move systems recognized by their distinctive circular irriga-
tion footprint. Flood irrigation in this data set is synonymous with surface irrigation and encompasses furrow
irrigation, basin irrigation, border irrigation and wild flooding (USDA‐NRCS, 2012). Furrow and basin irrigation
are the most common types of surface irrigation in this region. In basin irrigation, fields are leveled and bordered
with dikes to control or prevent runoff while furrow irrigation involves the creation of small channels between
crop rows to carry water down the field. Furrow irrigated fields are rarely diked so runoff typically occurs on these
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fields. The dry crop category correspond to fields without irrigation relying on natural precipitation processes
while sub‐irrigated fields refer to fields often in riparian areas without irrigation system but receiving additional
water due to high water table (Utah Division of Water Resources 2022). In this study, irrigation methods were re‐
labeled as Flood (F), Sprinkler (S) or Other (O) (Figure 1a). The class O encompassed non‐irrigated areas as well
as areas irrigated with less common irrigation methods such as drip irrigation.

The WRLU data set was supplemented by additional labeling data collected in and around the TFCC irrigation
project. Labeling in the TFCC area was performed within 235 square polygons of size 1.9 Km in which all
agricultural fields were labeled with their corresponding irrigation methods. Irrigation identification was per-
formed by a user with knowledge of irrigation methods in the region. Sprinkler‐ and furrow‐irrigated fields were
correctly identified by examining field appearances and spatial patterns associated with each irrigation method on
high resolution (1 m) aerial imagery from the National Agriculture Imagery Program (NAIP). Field irrigation
labels were later reclassified as F, S, or O. Labeling was performed on every year of the study period with
available NAIP imagery.

2.3. Model Input Development

The proposed irrigation methods mapping tool uses input imagery constructed from Tier 1 Surface Reflectance
data of Landsat missions 5 and 8. Landsat missions provide the longest record of earth observation from space
starting with the first Landsat satellite launched in 1972. Landsat missions 5, 7, and 8 were available for the 2003
to 2021 study period but due to the scan line corrector failure of Landsat 7 in 2003, products from this mission
were excluded from the study. Landsat 5 covered the period of 2003–2011 and Landsat 8 from 2013 to 2021.
Visible, near‐ and short‐wave infrared and thermal bands from these two data sets were used. For Landsat 5, these
bands were Bands 1 to 3 for the blue, green and red bands respectively, Bands 4, 5, and 7 for near‐infrared, short‐
wave infrared 1 and short‐wave infrared 2 and Band 6 for the thermal band. For Landsat 8, the corresponding
bands were Bands 2 to 7 for the visible and infrared bands and Band 10 for the thermal band. Landsat 5 and 8
satellites have a repeat cycle of 16 days which provided the opportunity to capture spatial and temporal patterns
associated with different irrigation methods. The proposed approach is based on the assumption that spatial and
temporal variations in surface reflectance data provide useful information to differentiate between irrigation

Figure 1. Map of the study area illustrating (a) agricultural fields categorized as Flood, Sprinkler and Other irrigation in a
closeup of the 2019 Water Related Land Use (WRLU) for 2019, (b) the Twin Falls Canal Company irrigation project in
southern Idaho, and (c) the extent of the WRLU data set. The class Other encompassed non‐irrigated areas as well as areas
irrigated with less common irrigation methods such as drip irrigation.

Water Resources Research 10.1029/2023WR036155

NOUWAKPO ET AL. 4 of 16

 19447973, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036155 by N

ational A
griculture L

ibrary, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



methods. To capture temporal patterns in reflectance, model inputs were computed over four 2‐month aggregation
periods and one 4‐month period. These periods were April 1–June 1, May 1–July 1, June 1–August 1, July 1–
September 1, and April 1–September 1, abbreviated throughout this paper using only the months (Figure 2).
These months correspond to the period when irrigation is the most active in the region. During each of the 2‐
month aggregation periods, differences between minimum and maximum (max‐min) values for each of the
Landsat input bands were computed while standard deviations and medians were computed for the April–
September period (Figure 2). The four 2‐month max‐min layers for each band were further averaged to give
one average max‐min layer per band (Figure 2). Each model input image was therefore made of 21 different
channels corresponding to the 7 average max‐min values, the 7 median and the 7 standard deviations over the 4‐
month period. Figure 3 shows an example of input images computed for 5 contiguous field irrigated with different
irrigation methods. Circular patterns can be identified in the center pivot (Sprinkler) field while linear wetting
features tended to appear where wheel line sprinklers have been utilized. The furrow‐irrigated fields (Flood)
showed less defined wetting patterns. Each layer in each image was standardized by subtracting cell values by the
average of the layer and dividing by the standard deviation. The Google EarthEngine platform (Gorelick
et al., 2017) was used to acquire Landsat imagery and compute model inputs. Input images were clipped to
64 × 64 pixel squares covering theWRLU footprint at a 30 m resolution. The 64 × 64 pixel squares were spatially
independent in the training and evaluation images that is, contiguous squares did not overlap. Input images used at
inference were however computed with an overlap of 32 pixels between adjacent squares to reduce edge effects.
Between 2003 and 2017, the yearly WRLU survey extent covered a fraction of the entire agricultural area
footprint of the State of Utah while the WRLU maps after 2018 covered the entire state. For each square, years
with valid WRLU irrigation method information provided sample images for model training and validation. To
maintain a balanced data set across years, a maximum of 2000 of the input image squares were extracted each

Figure 2. Summary of the input development approach for one sample illustrating Maxima‐Minima (Maxband − Minband), standard deviations (Stdev) and median
operations for each of the 7 Landsat bands (Red, Green, Blue, Near Infrared—NIR, Short wave infrared 1 and 2—SWIR1 and SWIR2, and Thermal band—THERM)
selected.
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year. Furthermore, to ensure a balance between F, S and O classes in the model, images with greater than 66% O
pixels were excluded. Eighty percent of the 64 × 64 squares (training squares) were randomly selected and used
for extracting training images while the remaining 20% (validation squares) contributed to validation images.
Training squares were spatially distinct from validation squares so that spatial patterns in the training images are
not repeated in the validation data set. In total 8,533 training and 2,149 validation images were extracted.

2.4. Proposed FCNN Model

A U‐Net architecture was used for the CNN developed for this irrigation mapping approach. The U‐Net archi-
tecture was developed by Ronneberger et al. (2015) for biomedical imaging. The architecture is composed of a
contracting CNN path which captures context in the input images and a symmetric expanding path that allows
precise localization of predicted labels. The U‐Net architecture has rapidly gained popularity as a classification
approach for remotely sensed images (Colligan et al., 2022; Flood et al., 2019; Z. Zhang et al., 2018). As a FCNN,
one key advantage of the U‐Net architecture is a fast computation time at inference compared to pixel‐based
methods (Long et al., 2015).

A schematic of the proposed architecture (Figure 4) is similar to that used by Colligan et al. (2022) to map
irrigation areas in Montana. The contracting path of the U‐Net network consists in a series of the following
sequence followed by max pooling layers: 2d convolution layer followed by rectified linear unit (ReLu) activation
and batch normalization. Furthermore a dropout layer followed each ReLu activation layer to reduce overfitting
and improve generalization (Hinton et al., 2012). A range of dropout rate were tested between 0.01 and 0.2 in 0.01
increment with the value 0.05 yielding satisfactory results in this study. In the expanding path of the U‐Net
network, we replaced the 2d up‐sampling layers used by Colligan et al. (2022) with transposed convolution as
used in the original Ronneberger et al. (2015) U‐Net implementation. A categorical cross‐entropy loss function
and the Adam optimizer (Kingma & Ba, 2014) were used to train the U‐Net model.

2.5. Data Augmentation and Model Training

To increase the training sample size and improve generalization capability of the ML model, input augmentation
was performed on the original images. The augmentation process consisted in a geometric augmentation followed
by a radiometric augmentation (Figure 5). The geometric augmentation applied a sequence of random zoom
(− 30%–30%) followed by a random rotation (− 0.8π and 0.8π) and a random bidirectional translation (− 20%–20%
of the image size) to each original image. Geometric augmentation was applied to each original image four times,
thus expanding the training and validation pools to 34,132 and 8,596 images respectively. Geometric

Figure 3. Example of input image layers illustrating spatial patterns associated with wetting patterns of different irrigation methods. Maxima‐Minima image layers from
Landsat 8 bands 4, 5, and 7 for aggregation periods between June 1 and 1 August 2014 and between July 1 and 1 September 2014 are displayed.
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transformation was applied simultaneously to both input and response (irrigation methods) images. The radio-
metric augmentation consisted in applying a Gaussian noise of random mean − 0.0002 to 0.0002 and a standard
deviation of 0.002 to each channel of the input image. The radiometric augmentation was applied to the input
images at each training iteration. The model was trained using a batch size of 64 and 51 steps per epoch. At each
epoch, each of the 16 years with available irrigation methods data contributed 200 randomly selected images,

Figure 4. U‐Net model architecture developed to map irrigation methods. Inputs are 64 × 64 pixel 21‐channel images constructed from Landsat 5 and 8 surface
reflectance data. Each blue box represents a multi‐channel feature map. Green boxes represent feature maps that are copied and used at subsequent levels of the U‐Net
network. Image and feature map sizes are indicated at the lower left edge and the number of channels on top of the boxes. The output of the model is a 3‐channel image
representing Flood/Surface, Sprinkler and Other irrigation methods.

Figure 5. Illustration of the image augmentation process showing the original image which was transformed into a series of augmented images by applying a random
zoom (±30%), a random rotation (±0.8π), a random bidirectional translation (− 20%–20% of image size). A Gaussian noise of standard deviation 0.002 and random
mean (±0.0002) was added to each channel of the geometrically transformed images. Edge pixels were reflected and a nearest neighbor interpolation was used.
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resulting in a total of 3,200 images per epoch. This allowed to have a balanced input data set across years. The
model was trained using the Tensorflow library (Abadi et al., 2016) on the USDA SCINET Ceres high perfor-
mance computer using a TESLA V100 GPU. Training was stopped when the loss function on the evaluation data
set has stopped decreasing for 50 epochs. To improve performance, 10 separate models were trained, and an
ensemble model developed by averaging the outputs of these models.

2.6. Model Performance Evaluation

Model performance was evaluated by building the confusion matrix and calculating the overall accuracy (A) and
precision (P), recall (R) and F1 score for each irrigation class from the pixel‐to‐pixel correspondence between
observed and predicted irrigation methods on the evaluation data set. The accuracy expresses the fraction of
overall pixels correctly classified by the model. For each class, the precision expresses the fraction of all predicted
pixels in the class that are true predictions. The recall is the fraction of all observed pixels of a given class that
have been correctly predicted by the model. The F1 score is a measure that balances P and R. The following
formula were used to calculate A, P, R, and F1:

A =
∑

i=F,S,O
TPi

∑
i=F,S,O

TPi + ∑
i=F,S,O

FNi
(1)

Pi =
TPi

TPi + FPi
(2)

Ri =
TPi

TPi + FNi
(3)

F1i =
2 × Ri × Pi
Ri + Pi

(4)

where TPi, FPi, FNi are respectively the numbers of true positive, false positives and false negative for irrigation
method i. Metrics A, P, R and F1 were calculated for the entire validation set to evaluate the overall performance
of the trained model. The performance metrics were also calculated for each year of available validation data to
evaluate the temporal stability of the A, P, R and F1 metrics. A third evaluation was performed by calculating
performance metrics within five spatially distinct regions to check the spatial stability of the trained model. Four
of these regions were quadrangles selected across the WRLU footprint. These regions were Elwood (577 Km2),
Logan (310 Km2), Richmond (260 Km2) and Sutherland (525 Km2), named after the largest town they encom-
pass. The fifth region covered the TFCC footprint, but evaluations were only made within the 1.9 Km squares in
which labeled irrigation methods were available.

2.7. Application to TFCC

The trained model was tested on the TFCC area (Figure 1b) to evaluate its effectiveness at predicting irrigation
methods outside the WRLU footprint and to evaluate changes in irrigation methods between 2003 and 2021. To
reduce year‐to‐year variability, the predicted irrigation method at a pixel location for a given year was compared
to the prediction of the preceding and the following year. The mode of predicted irrigation method at each pixel
for these three consecutive years was then chosen. Irrigation methods predictions for years 2006, 2011, 2013, and
2016 were compared to surveys conducted by Bjorneberg et al. (2020). Note that Landsat imagery for 2012 was
not available so the 2011 map used years 2010, 2011, and 2013 to compute the mode while the 2013 map used the
2011, 2013, and 2014 predictions.

3. Results and Discussions
3.1. Overall Performance

The 10 trained U‐Net models used to develop the ensemble converged after 148 to 212 epochs. Each of the 51
training steps was completed in 290 msec on the TESLA V100 GPU, resulting in training times ranging from 36
to 52 min for the ten U‐Net models. The performance of the ensemble model is summarized in Tables 1 and 2. Of
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the 3,276,800 pixels making up the evaluation data set, 2,557,720 pixels
(778225 F, 773410 S and 1,006,085 O pixels) were correctly predicted,
resulting in an overall accuracy of 0.78. Precisions achieved by the ensemble
model were 0.73, 0.82, and 0.80 for F, S, and O pixel classes respectively
(Table 2). The confusion matrix (Table 1) shows that most of the false pos-
itives in class F were pixels of class S (159030). Conversely, most false
positives in class S were pixels of class F (110688). False positives in class O
were more likely to be of class F (152051). Recalls for the F, S, and O classes
were respectively 0.75, 0.74, and 0.84 while F1 scores were 0.74, 0.78, and
0.82. These performance metrics were consistent with results from Raei
et al. (2022) who published performance values between 72% and 86% on
validation data for their proposed approach to segment irrigation method from
high‐resolution aerial imagery. The method proposed by Raei et al. (2022)

uses a U‐Net architecture with a ResNet backbone which differs from the traditional U‐Net approach used in this
study. The U‐Net on ResNet backbone approach used by Raei et al. (2022) is often used to deal with the
“vanishing gradient” problem which can adversely impact training performance in a gradient‐based learning
model (Glorot & Bengio, 2010). In our proposed approach, performance achieved were consistent with that tested
by Raei et al. (2022), possibly the result of the greater number of input layers which were intended to capture
dynamic patterns associated with irrigation methods. It is also important to note that our approach covers a wide
geographical area (Utah and southern Idaho) while the Raei et al. (2022) approach was developed and evaluated in
2 counties of southern Idaho. Furthermore, the proposed approach in this paper relies on Landsat satellite products
which are widely available across the globe at much higher temporal frequency (16 days) than high resolution
aerial imagery which are often unavailable in many parts of the globe and only every two years in the USA
through the NAIP program. As a result, the proposed approach in this paper is useful to map yearly changes in
irrigation methods and testable in other irrigated regions of the world.

3.2. Performance by Year

Figure 6 shows the results of the evaluation of the ensemble model for each year of available validation data. None
of the performance metrics displayed any systematic trend or shift with year, suggesting that the source of Landsat
imagery used (Landsat 5 vs. Landsat 8) did not have a measurable impact on model performance. The overall
accuracy of the model ranged from 0.70 to 0.91 with an average of 0.77. Precision values ranged from 0.55 to 0.93
with an average of 0.77 while R ranged 0.53–0.94 with an average of 0.76. F1 scores ranged 0.58–0.93 with an
average of 0.76. The model tended to have the lowest performance for flood irrigation prediction especially based
on the precision and F1 score.

3.3. Performance in Test Regions

Results of the performance evaluation by region are summarized in Table 3. Figure 7 shows observed versus
predicted maps for two example years in each region. Accuracy values in most test regions were consistent with
the 0.78 overall accuracy of the model (Table 2). Accuracy was the highest in the Elwood region (0.79) and lowest
in the Logan (0.59) and Richmond (0.59) regions. Figure 7 shows that many of the S irrigated areas in the Logan
and Richmond quadrangles were incorrectly predicted as F. Many of the mismatches occur in areas where small

areas of one irrigation class appear within large blocks of another class,
suggesting that the U‐Net models were not highly sensitive to small indi-
vidual fields but relied on broad spatial patterns to accurately recognize
irrigation methods. Accuracy values estimated from these maps were 0.82,
0.64, 0.66 and 0.78 for Elwood, Logan, Richmond and Sutherland respec-
tively thus, in agreement with those reported in Table 3. This suggests that the
32‐pixel overlap between contiguous squares used at inference did not
adversely affect performance. The coarse resolution of the Landsat bands
(30 m for RGB and SWIR and 60 m for the thermal band) likely limits the
ability of small spatial features to be accurately capture by the U‐Net models.
Improvements may be possible with the use of higher resolution satellite
products such as Sentinel 2. The Sutherland region was dominated by flood

Table 1
Confusion Matrix of the Irrigation Methods Prediction Obtained by Applying
the Ensemble of Trained U‐Net Models to the Evaluation Data Set

Predicted pixels

Surface/flood Sprinkler Other Total

Observed

pixels

Surface/Flood 778225 110688 152051 104096

Sprinkler 159030 773410 106270 1038710

Other 132212 58829 1006085 1197126

Total 1069467 942927 1264406 3276800

Note. Evaluation images were 64 pixels by 64 pixels and comparison with
observed data was done on the pixel basis.

Table 2
Results of the Evaluation of the Ensemble of Trained U‐Net Models Showing
Overall Accuracy (A), Precision (P), Recall (R) and F1‐Score (F1)
Calculated From Pixel‐To‐Pixel Comparisons Between Predicted and
Observed Irrigation Methods

Precision Recall F1‐score Accuracy
(P) (R) (F1) (A)

Surface/flood 0.73 0.75 0.74

Sprinkler 0.82 0.74 0.78 0.78

Other 0.80 0.84 0.82
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irrigation which was adequately predicted (P = 0.91 and R = 0.77) by the trained model. The model performed
well in the TFCC area (Figure 7) with an accuracy of 0.70 which was slightly less than the 0.78 overall accuracy
but greater than the accuracy achieved in the Logan and Richmond regions of the WRLU footprint. Despite the
comparatively small proportion of the training data that was collected in the TFCC irrigation project, the model
performed well at predicting S irrigation in TFCC (P = 0.72, R = 0.85, and F1 = 0.78) but greater confusion was
observed between F and O classes (F1 = 0.57 and 0.63 for F and O respectively). It is important to note that the
WRLU data set encompasses some irrigation methods under the O category (e.g., sub‐irrigated and dryland
farming) that are not common in the TFCC region. Furthermore, surface irrigation practices are constrained by
topography, water delivery infrastructure, and other local factors which may have resulted in slightly different
spatio‐temporal patterns in TFCC compared to areas in the WRLU footprint. Nevertheless, in TFCC most irri-
gated areas are either F or S with negligible occurrences of other irrigation methods. Most of the O prediction in
this region can therefore be reclassified as F.

Figure 6. Accuracy, precision, recall and F1 score obtained by evaluating the trained U‐Net model for each year with available validation data.

Table 3
Results of the Evaluation of the Ensemble of Trained U‐Net Models in Test Areas Near the Utah Towns of Elwood, Logan,
Richmond, Sutherland and in the Twin Falls Canal Company Irrigation Project in Southern Idaho

Accuracy

Precision Recall F1

F S O F S O F S O

Elwood 0.79 0.84 0.49 0.76 0.92 0.53 0.50 0.88 0.51 0.60

Logan 0.59 0.61 0.48 0.65 0.83 0.39 0.41 0.71 0.43 0.50

Richmond 0.59 0.20 0.85 0.73 0.63 0.60 0.55 0.30 0.70 0.63

Sutherland 0.74 0.91 0.1 0.46 0.77 0.69 0.58 0.83 0.17 0.51

TFCC 0.70 0.60 0.72 0.83 0.54 0.85 0.51 0.57 0.78 0.63

Note. Performance metrics are overall accuracy (A), precision (P), recall (R) and F1‐score (F1) calculated from pixel‐to‐pixel
comparisons between predicted and observed irrigation methods. P, R and F1 are reported for each irrigation class labeled as
F for Surface/Flood irrigation, S for sprinkler irrigation and O for Other.
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3.4. Application to TFCC and Implication for Irrigation Water Management

Figure 8 shows the maps of irrigation methods predicted for the TFCC irrigation project for years 2006, 2010 and
2013. These maps confirm the progressive conversion of surface irrigation to sprinkler systems. In 2006, 41.1% of
the agricultural land was classified as F whereas 51.9% was classified as S. In 2011, the F pixels decreased to
35.2% while the S pixels increased to 56.7%. Further conversion was observed by 2016 when F made up only
30.5% of classified pixels while S pixels increased to 61.1%. The proportion of O pixels remained stable between
2006 and 2016, ranging only between 7.0% and 8.4%.

Using surveys conducted on aerial imagery, Bjorneberg et al. (2020) found that sprinkler irrigation was 46%, 52%,
54%, and 59% of surveyed areas in 2006, 2011, 2013, and 2016 respectively (Figure 9). These results were slightly
lower but mostly within 5% of the 51.9%, 56.7%, 61.7%, and 61.1% values obtained using the ensemble model.
Besides the inherent accuracy limit of the ensemble model, additional factors controlling the gap between the

Figure 7. Maps of observed irrigation methods from theWater Related Land Use (WRLU) data set compared with predictions made using the ensemble of trained U‐Net
models for years 2009 (a) and 2018 (b) in test areas across the WRLU spatial footprint. U‐Net model input images were developed from Landsat 5 for year 2009 and
Landsat 8 for year 2018.
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Bjorneberg et al. (2020) findings and our results include the use of the 3‐year mode to map irrigation methods, and
the smaller survey area (3,500 ha or 4% of the TFCC land area) used in the Bjorneberg et al. (2020) study. In
particular, the use of the 3‐year mode in the development of the irrigation methods maps introduced a positive bias
for sprinkler irrigation prediction since this irrigation method was increasingly adopted in TFCC during the study
period. Overall, the conversion rate to sprinklers in TFCC was estimated to be 1.4% per year using the ensemble
model (Figure 9). This conversion rate is consistent with the 1.5% rate noted in Bjorneberg et al. (2020).
Nevertheless, Figure 9 also shows some temporary decline in the rate of conversion, particularly from 2014 to
2017 and after 2019. These decreases in conversion rate are the result of prediction errors in the U‐Net model
since retrograde conversion from sprinkler to flood or furrow irrigation is highly uncommon. The marked
decrease in conversion rate predicted by the U‐Net model during the 2014–2017 period was driven by a very poor
performance of the model in 2016, suggesting that the absence of 2016 WRLU training data degraded prediction
quality for this year.

Figure 9 demonstrates the ability of the trained ensemble model to map
irrigation methods for past and present conditions. As noted above, the irri-
gation methods predictions reveal the dominant irrigation in an area as small
fields of contrasting irrigation class than their surroundings are not well
resolved. The TFCC irrigation methods maps show that conversion to
sprinkler across the irrigation project seem to occur in spatial clusters that
expand over time. Much of the eastern part of the TFCC irrigation project was
dominated by sprinkler systems by the early 1990s. From the mid‐1990s,
many fields have been converted to sprinkler irrigation with financial assis-
tance from the Environmental Quality Incentive Program and other special
projects. In converting to sprinkler systems, center pivot systems are highly
desirable due to their low labor requirement but their expansion into new
areas can be constrained by the access to high voltage electricity. Figure 9
shows that sprinkler irrigation makes up nearly 70% of the agricultural land in
the TFCC project in the most recent estimates. Areas in future need of con-
version to sprinklers can be identified using maps shown in Figure 8. This
type of information will be valuable for resource management agency for
identifying and targeting priority areas. Furthermore, in many regions of the

Figure 8. Irrigation methods prediction in the Twin Falls Canal Company irrigation project for years 2006, 2011, 2013, and
2016. The percentage of agricultural areas irrigated with each irrigation method was calculated from the prediction maps.

Figure 9. Estimated proportion of agricultural land irrigated with sprinkler
irrigation in the Twin Falls Canal company irrigation project using the
ensemble of trained U‐Net models compared to the Bjorneberg et al. (2020)
survey.
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world, investments are being made in irrigation technology to improve outcomes on water quantity and quality
(Perry et al., 2017). Many of these investments include the conversion from surface irrigation to sprinkler sys-
tems. Perry et al. (2017) noted that understanding the effects of improvements in irrigation technology on water
resources requires a nuanced consideration of multiple factors as improvements in technology does not auto-
matically translate into water savings. The ability to map areas where conversion from surface to sprinkler
irrigation has occurred would provide much needed insights into the impact of sprinkler conversion on local and
regional water resources.

The ability of the proposed irrigation mapping approach to be applied to other irrigated watersheds depends on
many factors including the level of aridity of the target area and the method of irrigation to be mapped. The input
data used to train the UNet models originate from semi‐arid regions where natural precipitation amounts during
the growing season are very low. Most of the productive agricultural farms are therefore significantly irrigated,
leading to distinct contrasts between irrigated areas and non‐irrigated areas. As a result, the approach developed in
this paper might not be suitable in regions where natural precipitation amounts can support crop growth. The
predominant irrigation methods mapped by the proposed are center pivot and wheel line irrigation under sprinkler
systems and flood irrigation. The UNet models were therefore trained to recognize spatio‐temporal patterns
associated with these three irrigation types. Other sprinkler irrigation types such as linear move, solid sets or
micro‐irrigation systems were not abundantly represented in the training data. The developed approach is
therefore limited to regions characterized by low precipitation amount during the growing season and where the
main irrigation methods used are center pivot, wheel line and flood irrigation. The northwestern U.S. encom-
passes many such agricultural regions. Agricultural basins in eastern Washington, eastern Oregon, northern
California, Nevada, Utah, Montana, Colorado and Wyoming are examples of regions where the proposed
approach could be tested. Other regions of the world where the proposed approach can be tested include the
Middle East and North Africa region where natural precipitation for crop growth is low and surface irrigation
accounts for 86.6% of the irrigation methods versus 8.7% for sprinkler irrigation (Frenken, 2009).

Irrigation methods are rapidly changing in many irrigated regions of the world, including in the western USA.
Traditional surface irrigation methods such as flood irrigation are being upgraded to sprinkler systems, generally
leading to improvements in irrigation efficiency at the field scale (Al‐Jamal et al., 2001; Bjorneberg et al., 2020).
These field‐scale improvements do not always result in water savings at the watershed scale because some
irrigation projects supply irrigation water based on water availability rather than crop water demand (Bjorneberg
et al., 2020) while others show reductions in water volumes diverted for irrigation post‐conversion (Sando
et al., 1988). Conversion from surface irrigation to sprinkler systems is often associated with water quality im-
provements at the watershed scale (Bjorneberg et al., 2020; Nouwakpo et al., 2023) owing to the improved
infiltration and reduced runoff under sprinkler systems. Understanding the relationship between changes in
irrigation methods and irrigation efficiency at the basin scale requires a nuanced approach that takes into account
information on the location of various irrigation methods across the landscape. Mapping irrigation methods at
broad spatial scale is therefore needed to better assess impact on water resources. The mapping technique
developed in this paper offers the advantage of being testable in other irrigated regions of the world, many of
which play a crucial role on global food security. In many parts of the world, increasing population and a changing
climate create an increasing need for more accurate accounting of freshwater use, particularly for irrigation, the
largest share of freshwater withdrawals. In the USA, the U.S. Geological Survey produces estimates of water use
for various water use categories every 5 years since 1950 as part of the SECUREWater Act (Public Law 111–11,
123 Stat. 991) (Painter et al., 2021). These estimates classify irrigation water use by the type of irrigation method
using survey data. These survey data provide aggregated information on the proportion of irrigation methods in a
geographical area (state, county, etc.) but do not inform on the spatial distribution of irrigation methods. The
technique proposed in this paper has the potential to routinely track the spatial distribution of irrigation methods
on the landscape in addition to providing timely aggregates of state‐ and county‐level information on irrigation
methods. Irrigation method maps such as those created in this paper can also improve hydrologic modeling of
surface and groundwater resources in irrigated watersheds where the influence of a given irrigation method
depends as much on its abundance in the watershed as its relative position along drainage networks.

4. Conclusions
In this paper, we developed a deep learning approach to map irrigation methods in agricultural regions where
surface irrigation and sprinkler systems are dominant. The U‐Net architecture employed for this modeling
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technique adequately mapped irrigation methods with an overall accuracy of 0.78. Performance of the model was
temporally stable but varied in space. The trained U‐Net models were used to develop maps of irrigation methods
for an irrigated watershed in Southern Idaho. Comparison of sprinkler irrigation estimates from these predicted
maps were in alignment with previously published data. The ability to accurately capture field‐level details was
limited by the coarse resolution of the Landsat images used as model input. This new tool will help water
management stakeholders in their efforts to improve water availability and quality in irrigated areas. The
developed maps are suitable for assessing changes in irrigation practices at broad spatial scales and useful to
identify priority areas in need of future conversion from surface irrigation to sprinkler irrigation. The proposed
approach has potential application in other irrigated areas where rainfall input during the growing season is
minimal and irrigation methods are varied across the landscape. Nevertheless, because this approach was
developed using data predominantly from Utah, it is unclear if achieved performance will be maintained in other
irrigated regions of the western USA and the world. There is a need for further evaluation of the proposed
approach in other irrigated regions where irrigation methods maps are available for transfer learning and per-
formance evaluation. The 30‐m resolution of the Landsat imagery may also be a limiting factor in areas where
agricultural fields are small in size. Furthermore, as a machine learning method, the U‐Net approach developed in
this paper does not inform on the specific biophysical and/or interferometric processes aiding in the segmentation
between irrigation method classes. It is therefore unclear how this technique will perform in areas with drastically
different crops and water availability constraints than those prevailing in Utah and Southern Idaho. In this study,
Landsat images were temporally aggregated into input images for the U‐Net model. The choice of this temporal
aggregation method required some trial and error but could be obviated in future work with the integration of
suitable deep learning approach for sequential data such as Recurrent Neural Networks.

Data Availability Statement
The WRLU data set is available at https://gis.utah.gov/data/planning/water‐related‐land. Additionally labeled
irrigation methods of agricultural fields in southern Idaho and input/output processing and model training codes
are available for download at https://datadryad.org/stash/share/gaPC9SliGpvUVUCfNlgZxdcpRQ2DDadOKT‐
OA9Dovh4. Codes are also are available at https://github.com/oishee‐hoque/Land‐Segmentation‐Based‐on‐
Irrigation‐Type.
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