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Abstract
Understanding the long-term effects of manure applications on the soil microbial

component in semiarid climates will be key to sustain essential processes that affect

their productivity and soil health. In this paper, soil health indicators encompassed

both selected chemical and biological indicators. From 2004 to 2009, solid dairy

manure treatments were applied to plots at cumulative rates of 0, 134, and 237 dry

Mg ha−1 (34–56 dry Mg ha−1 year−1) in a randomized complete block with three

replicates. Soil samples were taken from each manure rate in the spring of 2020 at

0–15 and 15–30 cm. Eleven years after manure applications ceased, many of the soil

chemical and biological indicators were different between the manure and control

treatments. In general, soil organic carbon and biological indicators were signifi-

cantly greater in the 134 and 237 Mg ha−1 treatments as compared to the 0 Mg ha−1

treatment.

1 INTRODUCTION

In the United States, Idaho is currently the third largest dairy
milk producer, with a total of 661,000 lactating cows (USDA-
NASS, 2023). In the past three decades, Idaho total herd size
has increased by approximately 242%, with most of the pro-
duction (∼71%) occurring in the south-central part of the state
known as the Magic Valley. Given that an average lactating
cow produces 58 kg manure day−1, Idaho producers must
manage a total of nearly 3.8 × 107 kg manure day−1. Because
the majority of this manure is land applied, there is a need
to focus additional research on manure and nutrient manage-
ment (He et al., 2016; Leytem et al., 2021), as well as on other
potential negative environmental implications (Dungan et al.,
2023; McKinney et al., 2018).

Few studies have been conducted to assess the effects
of cattle manure (beef or dairy) on soil health indicators
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(chemical and biological) in irrigated semiarid cropping sys-
tems (Dungan et al., 2022; Elzobair et al., 2016; Lupwayi
et al., 2019; Miner et al., 2020). In southern Idaho, Dungan
et al. (2022) found that enzyme activities and N transforma-
tion rates were significantly greater in soils amended with
high rates of dairy manure for several years. In the semiarid
environment of Lethbridge, Canada, Lupwayi et al. (2019)
reported that increased enzyme activities could be detected
decades after the last beef cattle manure application, with
significantly greater microbial biomass and enzyme activ-
ity under irrigated versus rainfed conditions. Other research
conducted in irrigated croplands in Idaho has demonstrated
that soils receiving dairy manure have different soil chem-
ical properties and crop yields and quality compared to
non-manured soils (Baxter et al., 2023; Robbins et al., 1997).

The legacy effects of cattle manure solids can be attributed
to increases in SOC followed by the release of nutrients via

Agric Environ Lett. 2024;9:e20128. wileyonlinelibrary.com/journal/ael2 1 of 8
https://doi.org/10.1002/ael2.20128

https://orcid.org/0000-0003-4670-1868
https://orcid.org/0000-0002-1989-1582
mailto:david.tarkalson@usda.gov
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/ael2
https://doi.org/10.1002/ael2.20128
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fael2.20128&domain=pdf&date_stamp=2024-04-29


2 of 8 TARKALSON ET AL.

microbial mineralization, which can occur for long periods
of time after the last manure application (Indraratne et al.,
2009; Larney et al., 2016; Meek et al., 1982). However, addi-
tional research is required to better understand the long-term
effects of manure, especially in irrigated semiarid climates in
the western United States. The objective of this study was
to evaluate the effect of past dairy manure applications on
selected soil health indicators (chemical and biological) in an
irrigated field 11 years after the last manure application. A
specific emphasis was placed on the use of enzyme indicators
and N transformation rates, as these biological measurements
are sensitive to changes in management (Stott, 2019). This
study builds upon previous research at a field site in Kim-
berly, ID (Tarkalson et al., 2018) and it will be used to advance
our understanding of the unique long-term influence that
dairy manure imparts upon soil health properties in semiarid
southern Idaho.

2 MATERIALS AND METHODS

The field study was initiated in 2004 at the USDA-ARS North-
west Irrigation and Soils Research Laboratory in Kimberly,
ID, on a Portneuf silt-loam (coarse-silty mixed superactive
and mesic Durixerollic Calciorthids). Treatments consisted
of solid dairy manure (open-lot scrapings) at cumulative dry
application rates of 0, 134, and 237 Mg ha−1 (referred to as
0, 134, and 237 Mg, respectively). Each treatment was repli-
cated three times in a randomized complete block design. The
manure was applied from 2004 to 2009 to field plots of 0.1 ha
at annual rates ranging from 34 to 56 dry Mg ha−1. Dur-
ing this time, the 0 Mg treatment (i.e., non-manured control)
received synthetic commercial fertilizer based on soil tests
and published recommendations (Brown et al., 2010; Moore
et al., 2012; Robertson & Stark, 2003; Walsh et al., 2019).
From 2010 to 2019, all treatments were uniformly applied
with regard to cropping, fertilizer, irrigation, and other cul-
tural practices. Conventional tillage occurred each year from
2004 to 2020. The main conventional tillage practices used in
a given year were either disk and roller harrow or moldboard
plow and roller harrow.

Soil samples were collected in the spring of 2020 prior to
fertilization and crop planting. From each plot, six soil cores
(0–15 cm and 15–30 cm) were collected and composited by
depth and thoroughly mixed. Field moist subsamples were
sieved (2 mm), then a portion was immediately placed into
a clean sealable plastic bag and refrigerated at 5˚C, while
the other portion was air-dried, then placed into a clean seal-
able plastic bag. Soil biological analyses on field moist soils
were completed within 2 weeks of the sampling time. The soil
samples were analyzed according to chemical and biological
procedures listed in Table 1.

Core Ideas
∙ Dairy manure has long-term effects on soil health

indicators in southern Idaho semiarid irrigated
soils.

∙ Dairy manure last applied 11 years prior to soil
sampling increased many of the soil health indi-
cators.

∙ Soil biological indicators can be effectively uti-
lized to understand the legacy effects of manure.

Statistical analysis was conducted in Statistix 10 (Analyti-
cal Software). Analysis of variance (ANOVA) was conducted
for manure history main effect for soil health indicators.
Significance was determined at α = 0.1. For significant
ANOVA effects, mean separation was conducted using the
least significant difference method.

3 RESULTS AND DISCUSSION

Eleven years after manure applications ceased, many of
the soil health indicators were different between treatments,
despite the uniformity of management practices from 2010 to
2019 (Table 2). In general, enzyme activities and N transfor-
mation rates were significantly greater in the 134 and 237 Mg
treatments as compared to the non-manured control. There-
fore, it is evident that manure applications had a long-term or
legacy effect (at least 11 years post manure application) on soil
health indicators, especially those related to nutrient cycling
(Table 2).

3.1 Chemical properties

The manure treatments had a significant effect on SOC
at 0–30 cm, where the SOC concentrations increased with
increasing manure application rate (Table 2). Compared to 0
Mg, the SOC concentrations were 17% and 25% greater in the
134 and 237 Mg treatments, respectively. Other studies con-
ducted in semiarid climates have shown that soils receiving
cattle manure can increase SOC (Chatterjee et al., 2017; Deng
et al., 2006; Meek et al., 1982; Sommerfeldt et al., 1988).
SOC is considered the leading baseline soil health indica-
tor (Lehman et al., 2015) and manure addition is one of the
few ways that SOC can be rapidly increased and potentially
sustained in semiarid soils (Bierer, Leytem, Dungan, et al.,
2021; Dungan et al., 2021; Ghimire et al., 2017) when com-
pared to other management practices such as cover crop and
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T A B L E 1 Selected soil health indicators (chemical and biological), their purpose, and potential implications when evaluating soil health effects
of dairy manure applications to agricultural soils (adapted from Dungan et al. [2022]).

Method/indicator Purpose Implications for soil health and functions
Chemical
pH; EC Influences soil microbiome diversity and bacterial

community composition

Nitrate (NO3-N) Direct measure of plant and
microorganism available N

Dominate form of plant and microorganism available N
and is a component of chlorophyll and ammino acids

Bicarbonate (Olsen) P Indirect measure of plants and
microorganism available P

Plays a role in energy transfer, photosynthesis,
transformation of sugars and starches, nutrient
movement, and transfer of genetic information

Soil organic C (SOC) Indirect measure of Soil organic
matter (SOM). SOC is 58% of
SOM.

Main source of energy for soil microorganisms; indicator
of C sequestration

Biological
β-Glucosidase

Enzyme activity assay Related to the C cycle, acting in the cleavage of cellobiose
into glucose molecules. Because of its sensitivity, this
enzyme is considered a soil quality indicator and is
directly related to the quantity and quality of SOC.

β-Glucosaminidase Enzyme activity assay Catalyzes the hydrolysis of chitin to amino sugars (major
source of mineralizable N). This hydrolysis is important
in C and N cycling in soils

Phosphomonoesterase Enzyme activity assay Involved in soil P cycling. Catalyzes the hydrolyzes of
organic P compounds to inorganic P compounds

Arylsulfatase Enzyme activity assay Involved in soil S cycling. Catalyzes the hydrolysis of ester
sulfates. Highly correlated with SOC

Autoclaved citrate extractable
protein

Amount of protein-like substances
present in SOM

Major source of N that will become available to plants
through mineralization; soil structure.

Potentially mineralizable N Capacity of microbial community to
mineralize N in organic residues

Indicator of labile N and microbial activity for increasing
plant available N

Denitrification enzyme
activity

Capacity of microbial community to
reduce nitrate to N gases under
anaerobic conditions

Related to N dynamics and loss of plant available N

Potential ammonia oxidation Capacity of microbial community to
oxidize ammonium

Related to N dynamics and crop N supply.

no-tillage (Acosta-Martinez et al., 2011; Blanco-Canqui et al.,
2013; Liebig et al., 2019). However, identifying best man-
agement practices to maximize C sequestration and maintain
crop yields is difficult in semiarid agricultural soils, with a
particular lack of knowledge of relationships between SOC
stabilization mechanisms and different management practices
(Garcia-Franco et al., 2018).

In the present study, Olsen P concentrations were found
to be 71% greater in the 237 Mg treatment compared to the
non-manured control (Table 2). However, the crops in all
treatments had sufficient P according to crop recommenda-
tions (Brown et al., 2010; Moore et al., 2012; Robertson &
Stark, 2003; Walsh et al., 2019). In a study conducted in
southern Idaho, Baxter et al. (2023) determined that open-
lot dairy manures collected from 2015 to 2020 contained 6 g
P kg−1 on average (range = 4.5‒7.8 g P kg−1). Due to the
immobile nature of P, it can accumulate in soils when manure
P is applied at rates that exceed plant requirements, thus,

P surpluses can be expected to persist for long periods of time
(Leytem & Mutegi, 2019; Leytem et al., 2021). In contrast
to soil P, pH, electrical conductivity (EC), and NO3-N con-
centrations were not found to be significantly elevated in the
manure-treated soils (Table 2). Studies in Idaho have shown
that dairy manure generally does not increase soil pH due to
the high buffer capacity of alkaline calcareous soils (Bax-
ter et al., 2023; Dungan et al., 2022). With respect to EC,
Bierer et al. (2023) found that EC increased due to recent
manure applications, but in the present study, we found that
after 11 years the EC of the manure treatments was similar to
the non-manure treatment. Because the irrigation water (from
the Snake River) used in this study is relatively low in salts,
any salts added in manure will be leached over time. The lack
of differences in NO3-N concentrations between treatments
was likely impacted by the annual commercial fertilizer appli-
cations (168 kg N ha−1) in the previous 2 years (2018 and
2019).
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T A B L E 2 Selected soil health indicators (chemical and biological) in soil depths (0–30 cm for chemical, and 0–15 and 15–30 cm for
biological) in 2020 from study treatments.

Treatment
Chemical
propertiesa

Soil depth
(cm)

Mg dry
manure ha−1

SOC
(g kg−1) pH EC (µS cm−1)

NO3-N
(mg kg−1) Olsen P (mg kg−1)

0–30 cm 0 10.1c 8.06 372.6 11.3 25.0b

134 11.8b 8.04 410.7 7.0 26.9b

237 13.4a 8.05 440.7 26.3 85.9a

ANOVA p-value 0.009 0.954 0.308 0.350 0.008

Enzyme
activitiesb

β-Gluco-
sidase

β-Gluco-
saminidase

Phosphomono-
esterase

Arylsul-
phatase

Geometric mean
index

µg p-nitrophenol g−1 h−1

0–15 cm 0 75.9c 6.8b 162.7b 14.3b 32.9b

134 97.4b 11.8a 192.6a 20.3a 45.8a

237 116.1a 12.8a 209.4a 23.9a 52.1a

ANOVA p-value 0.004 0.083 0.054 0.042 0.021
15–30 cm 0 91.8c 10.2c 178.6c 17.0b 40.8c

134 112.3b 16.7b 198.6b 28.0a 56.8b

237 135.5a 17.0a 247.0a 30.7a 64.5a

ANOVA p-value 0.023 0.051 0.004 0.004 0.007
ACE PMN DEA PAO

N-Related indicatorsc µg g−1 µg NH4-N g−1 7 day−1 µg N2O-N g−1 h−1 µg NO2-N g−1 h−1

0–15 cm 0 2606c 14.8 34.9b 1.17

134 3152b 15.2 40.3b 1.38

237 3629a 13.8 61.3a 1.75

ANOVA p-value 0.003 0.765 0.043 0.101

15–30 cm 0 2517c 11.2b 33.2c 1.10b

134 3217b 10.1b 44.1b 1.25a

237 3821a 14.3a 57.5a 1.20a

ANOVA p-value 0.001 0.097 0.001 0.069

Note: Analysis methods and references are listed in the table footnotes. Significance was determined at the 0.10 probability level (least significant difference). Significant
ANOVA p-values are bolded. Within each analyte and soil depth, values with the same letter are not significantly different.
Abbreviation: ANOVA, analysis of vaiance.
aAnalysis protocols: soil organic carbon (SOC) (Bierer, Leytem, Rogers, et al., 2021), pH (Gavlak et al., 2005), electrical conductivity (EC) (Rhoades, 1996), nitrate-N
(NO3-N) (Mulvaney, 1996), and plant available phosphorus (P) (Olsen, 1954).
bAnalysis protocols: β-glucosidase, β-glucosaminidase, alkaline phosphomonoesterase, and arylsulfatase (Acosta-Martinez et al., 2018). The geometric mean index of all
enzyme activities was calculated as: 4

√
glucosidase × glucosaminidase × alkaline phosphomonoesterase × arylsulfatase (García-Ruiz et al., 2008).

cAnalysis protocols: autoclaved citrate extractable (ACE) soil proteins (Wright & Upadhyaya, 1996), potentially mineralizable N (PMN) (Waring & Bremner, 1964),
potential ammonia oxidation (PAO) (Schmidt & Belser, 1994), and denitrification enzyme assay (DEA) (Hunt et al., 2003; Tiedje, 1994).

3.2 Enzyme activities

The manure treatments, 11 years since the last application,
had a significant effect on all enzyme activities at 0–15 and
15–30 cm (Table 2). Compared to 0 Mg, β-glucosidase, β-
glucosaminidase, phosphomonoesterase, and arylsulphatase
activities (measured as μg p-nitrophenol g−1 h−1) in the
134 and 237 Mg treatments were anywhere from 18% to
88% greater at 0–15 cm and 11% to 81% greater at 15–
30 cm. The enzyme activities were positively correlated with
manure application rate and tended to be slightly greater

in the subsoil at 15–30 cm. These enzymes play roles in
C, N, P, and S cycling in soil (Table 1). The geomet-
ric mean index of the enzyme activities can serve as an
overall indicator of soil health (García-Ruiz et al., 2008).
The geometric mean index further highlights the effects
of manure treatments on individual enzyme activities at
both depth increments (Table 1). Because most livestock
manures are easily decomposed by soil microorganisms,
increased enzyme activities can be expected, and they are
often correlated with application rate and associated SOC
levels (Acosta-Martinez et al., 2011; Deng et al., 2006;
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Hou et al., 2012; Khorsandi & Nourbakhsh, 2007). In the
present study, enzyme activities were ranked in the follow-
ing order based on sensitivity to the past manure applications:
β-glucosaminidase > arylsulfatase > β-glucosidase > phos-
phomonoesterase. In the same soil type, Dungan et al. (2022)
found that in the year after the final dairy manure appli-
cations (annual and biennial over 7 years) that enzyme
activities were greater overall and β-glucosidase was the most
sensitive to manure, followed by β-glucosaminidase > phos-
phomonoesterase = arylsulfatase. The enzymatic differences
between the present study and Dungan et al. (2022) suggest
a change in the soil microbial community function and com-
position as time from the last manure application increases.
However, the elevated enzyme activities in the present study
do confirm a manure legacy effect of at least 11 years. Sim-
ilarly, in a semiarid climate in Canada, legacy effects were
still present at least 13 years after the last manure appli-
cation, as determined by enzyme activities and microbial
community composition (Lupwayi et al., 2019; Zhang et al.,
2018).

3.3 Nitrogen dynamics

Manures can contain significant amounts of needed microbial
and plant available N, and the amounts of N can vary across
animal types and diets (Pagliari et al., 2019). The manure from
this study was from an intensively managed dairy system that
implements feed supplementation for optimum milk produc-
tion. Past manure treatments had a significant effect on all
N-related indicators at 15–30 cm, but at 0–15 cm, only auto-
claved citrate extractable (ACE) and denitrification enzyme
assay (DEA) were significantly affected by manure (Table 2).
In general, for all significant treatment/depth combinations,
ACE, potentially mineralizable N (PMN), potential ammonia
oxidation (PAO), and DEA for the 134 and 237 Mg treat-
ments were greater than the 0Mg treatment for that depth. At
15–30 cm, ACE and DEA were 28%‒73% greater in the 134
and 237 Mg treatments when compared to the non-manured
control, while PMN was 28% greater in 237 Mg and PAO
was 28% greater on average in both 134 and 237 Mg treat-
ments. At 0–15 cm, ACE was 21%‒39% greater in the 134
and 237 Mg treatments and DEA was 76% greater in the 237
Mg treatment compared to 0 Mg manure. The non-significant
differences between treatments for PMN and PAO at 0–15 cm
in the present study was likely due to equilibration. The pur-
pose and function for each of these indicators can be found
in Table 1. In brief, ACE represents a major organic N pool
(i.e., protein) that will supply N to microbes and plants after
mineralization, while PMN, PAO, and DEA represent the
rate of N transformation during mineralization, nitrification,
and denitrification, respectively. Both PMN and PAO sup-
ply crop N, but DEA represents a loss of plant available N.

The application of livestock manure to soil has been shown to
increase ACE concentrations, which in turn can help improve
aggregate stability (Halder et al., 2021; Zhang et al., 2014).
In a meta-analysis conducted by Mahal et al. (2018), it was
reported that PMN was greater in soils receiving manure as
opposed to inorganic N fertilizer or compost. Similarly, both
PAO (Enwall et al., 2007; Nyberg et al., 2006; Tao et al.,
2017) and DEA (Tenuta et al., 2000) rates were also found
to be highly influenced by livestock manure fertilization. The
influence of manure of ACE, PMN, PAO, and DEA was also
verified by Dungan et al. (2022), but there is a scarcity of
information regarding manure legacy effects on these bio-
logical indicators. The present study, however, provides new
data showing that ACE, PMN, PAO, and DEA are effective at
revealing past dairy manure applications in irrigated semiarid
agricultural soils.

4 CONCLUSIONS

Dairy manure has long-term effects on commonly used soil
health indicators in southern Idaho semiarid irrigated soils.
Dairy manure last applied 11 years prior to soil sampling in
this study increased many of the measured soil health indica-
tors. During the manure application period (2004–2009), the
annual application rates (134 and 237 dry Mg ha−1) were typ-
ical of general production practices. This was the first study
to assess the effects of historic dairy manure applications on
soil health indicators in the Northwest United States. These
research findings will be combined with data from the USDA-
ARS Dairy Agroecosystem Work Group Manure Priming and
Manure Legacy projects to understand the long-term effects
of dairy manure application on soil health, crop production
nutrient cycling, and economics manure applications.
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