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ABSTRACT. The area irrigated by furrow irrigation in the U.S. has been steadily decreasing but still represents about 20% 
of the total irrigated area in the U.S. Furrow irrigation sediment loss is a major water quality issue in the western U.S. and 
a method for estimating sediment loss is needed to quantify the environmental impacts and estimate effectiveness and 
economic value of conservation practices. The objective of the study was to investigate the use of the unsupervised machine 
learning technique Kohonen self-organizing maps (KSOM) to predict furrow sediment loss. Historical published and 
unpublished data sets containing measurements of furrow irrigation sediment loss in the western U.S. were assembled into 
a furrow sediment loss data set comprising over 2000 measurements. Despite the immunity of KSOMs to measurement 
variability, the inherent variability in measured furrow sediment loss limited the ability of a KSOM model to reliability 
predict furrow sediment loss. Furrow sediment loss was under predicted by 44% on average with a linear regression 
coefficient of determination of 0.6. The KSOM model was placing little weight on measured sediment loss in the input data 
set, indicating that it was clustering the data based on input parameters defining the hydraulic and soil conditions. This 
outcome was used to develop a transfer learning approach for predicting furrow sediment loss. The transfer learning 
approach used a KSOM to cluster data records of similar hydraulic and soil conditions in the data set. Mean measured 
sediment loss and furrow flow rate of each cluster was determined based on data set vectors assigned to a cluster by the 
KSOM. Furrow sediment loss prediction was obtained by applying an input vector to the KSOM to identify the cluster the 
input vector most closely matches. Then the mean measured sediment loss of the identified cluster was adjusted for any 
difference between the input vector furrow flow rate and cluster mean furrow flow rate to obtain a prediction of furrow 
sediment loss. Predicted furrow sediment loss was 16% less than measured sediment loss on average with a coefficient of 
determination of 0.82. When the data set was randomly split into model development (90%) and validation (10%) data sets 
the prediction results were similar. 
Keywords. Artificial intelligence, Furrow irrigation, Model, Sediment loss, Self-organizing map, Surface irrigation, Transfer 
learning. 

Introduction 
Surface irrigation (gravity irrigation), where the force of gravity causes water to flow downslope across the land surface 

and infiltrate, has been slowly decreasing in the U.S., but still represents about 36% of the total irrigated area or 8.1 Mha 
(USDA-NASS, 2018). Furrow irrigation is one form of surface irrigation practiced on row crops where water is introduced 
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at the upslope end of a field into small equally spaced, man-made channels between crop rows, which infiltrates as it flows 
down slope, storing water in the root zone for crop growth. In the 10 western U.S. states (AZ, CA, CO, ID, MT, NM, OR, 
UT, WA, WY), 1.4 Mha or 14% of the irrigated area remains under furrow irrigation. Water inflow rate to the furrow must 
be sufficient to ensure water advances to the end of the field in a reasonable amount of time to allow sufficient time for water 
to infiltrate along the full length of the furrow. Water in excess of infiltration flows off the field and often enters nearby 
water bodies. As water flows in furrows, it detaches soil particles which are transported down slope. Furrow flow rate 
decreases down slope due to infiltration such that suspended soil particles can no longer be transported and are deposited in 
the furrow. Water leaving the field carries sediment along with absorbed chemicals which degrades the quality of receiving 
water bodies. Soil loss from furrow irrigation often exceeds 2 to 11 Mg ha-1 (Koluvek et al., 1993) and rates of up to 100 
Mg ha-1 have been measured in experimental studies (Berg and Carter, 1980; Evans et al., 1995; Trout, 1996; Fernández-
Gómez et al., 2004). Crop yield reductions up to 25% have been documented at upslope end of fields from 80 years of 
furrow irrigation induced erosion (Berg and Carter, 1980; Carter et al., 1985; Carter, 1993). Furrow irrigation sediment loss 
is a major water quality issue and a method for estimating sediment loss is needed to quantify the environmental impacts 
and estimate effectiveness and economic value of conservation practices. 

Acquiring field data for developing process-based furrow erosion models is challenging (Mateos and Giráldez, 2005). 
Physical models used to predict furrow erosion are based on predominately empirical equations used to model rainfall-
induced rill erosion (Bjorneberg et al., 2000). The conditions used during experimental development of governing equations 
limits use of the equations to field conditions representative of the experimental conditions. The physical conditions of rill 
erosion under rainfall runoff differ from furrow irrigation in several aspects (Bjorneberg et al., 2000). For example, water 
initially flows on dry soil during furrow irrigation, but under rainfall conditions the rill surface is wet before water flow 
begins. Instantaneous wetting of soil aggregates replaces air absorbed on internal soil particle surfaces, which can break 
apart soil aggregates (Carter, 1990) increasing soil erodibility. This is one possible reason why furrow erosion often occurs 
with less than critical hydraulic shear (Kemper et al., 1985). Another difference between rill and furrow erosion is that 
relatively clean water is introduced into furrows while sediment laden water enters rills under rainfall erosion. Additionally, 
furrow flow rate decreases with distance, which is typically opposite for rills with rainfall runoff. Lastly, flow in furrows 
usually lasts 12 to 24 hours, considerably longer than a typical rainfall-runoff event. Initially, sediment detachment during 
furrow irrigation may be like rill erosion, but after several hours head cuts and side cuts become important mechanisms for 
sediment detachment (Bjorneberg et al., 2000) which are not considered in rainfall induced rill erosion. In a review of erosion 
and sedimentation processes in furrow irrigation from field studies, Trout and Neibling (1993) found that the process of 
detachment, transport, and deposition occurring in furrow irrigation are not adequately quantified by rill erosion equations 
based on hydraulic shear. While rill erosion-based equations do not adequately predict erosion for furrow irrigation they do 
provide insight into the factors and important relationships (Fernández-Gómez et al., 2004). Trout and Neibling (1993) 
concluded that while process-based models are important for understanding furrow erosion processes, current models can 
predict furrow sediment loss no better than empirical models relating sediment loss to measurable hydraulic parameters such 
as slope, flow rate and soil characteristics such as texture.  Bjorneberg et al. (1999) evaluated furrow irrigation erosion 
predicted by the Water Erosion Prediction Project (WEPP) model (Nearing et al., 1989), a process-based model and 
concluded that the steady-state WEPP was not applicable to furrow erosion based on field evaluations for a single soil. 
Baseline erodibility and critical shear values developed under rainfall runoff conditions were higher than calibrated values 
for furrow irrigation. Sediment deposition based on transport capacity also did not match measured deposition in furrows. 
Bjorneberg et al. (2010) reviewed the current status of furrow sediment loss prediction and concluded that an empirical 
model may be as good as or better than a process-based model where the parameters cannot be quantified for field conditions.  

The lack of an adequate process-based model for predicting furrow irrigation sediment loss has led to the development 
of empirical models for over half a century. Koluvek et al. (1993) noted that the first published equation for predicting furrow 
erosion was based on research in Utah U.S., which directly related erosion to exponential functions of furrow flow rate and 
slope with exponents greater than one (Israelsen, 1946). Regression models have been developed to predict sediment loss 
with limited success (Fornstrom and Borrelli, 1985; O’Donkor, 1978). More recently, an empirical surface irrigation soil 
loss (SISL) model was developed by the Idaho Natural Resources Conservation Service (NRCS) in 1991 to estimate annual 
soil loss from furrow irrigated fields to assess benefits of conservation practices, such as converting from furrow to sprinkler 
irrigation (Bjorneberg et al., 2007). An evaluation of the SISL model with measured furrow irrigation erosion from two 
studies in Idaho and one in Washington showed that the model predicted the relative effects of conservation practices of 
straw mulching and surge irrigation reasonably well, however, the absolute differences between measured and predicted soil 
loss were sometimes large. Furrow sediment loss is inherently highly variable, which makes model development 
challenging. Sediment loss from adjacent field furrows under identical hydraulic and field conditions can vary by a factor 
of eight for mean sediment losses < 20 kg and by a factor of two for mean sediment losses > 200 kg (fig.1). 

Machine learning represents a collection of relatively new computer algorithms for discovering relationships or making 
inferences from sample data. Machine learning is finding uses in many branches of science, including agriculture. The goal 
of machine learning algorithms is to have the computer discover unknown relationships in a data set to optimize a feedback 
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function.  The nature of the feedback function is used to classify machine learning algorithms in to three general categories: 
1) supervised learning; 2) unsupervised learning; and 3) reinforcement learning. Supervised learning is the most common 
form of machine learning where the algorithm adjusts model parameters to optimize an output. Linear regression and feed-
forward neural networks (FFNN) are examples of supervised learning where model parameters are adjusted to minimize the 
sum of square errors between model predications and a measured value. King et al. (2016) used a feed-forward artificial 
neural network (FFNN) to model furrow sediment loss resulting in an R2 = 0.71 between predicted and measured sediment 
loss. The desire to maximize prediction performance resulted in an over-trained model where the model learned the data set 
rather than underlying physical relationships representing the furrow sediment loss process. The high degree of variability 
in measured furrow sediment loss prevented the model from learning underlying physical processes. The resulting NN model 
provided nonsensical estimates of furrow sediment loss when new input data was entered into model. For example, 
decreasing sediment loss with increasing flow rate. It is unlikely that any type of supervised artificial intelligence model will 
provide good estimates of furrow sediment loss due to the inherent natural variably in the furrow sediment loss process. 
Unsupervised learning algorithms optimize a measure of data structure to discover hidden relationships in the data rather 
than minimize prediction error of a parameter. Kohonen self-organizing maps (KSOM) are a good example of unsupervised 
machine learning. The KSOM is a unique type of neural network able to convert complex, nonlinear statistical relationships 
between high-dimensional data items into simple geometric relationships on a low-dimensional display, usually 2-
dimensional. KSOMs use competitive learning related to neighborhood distances between inputs to preserve the topological 
properties of the measured input data set. The KSOM is a clustering algorithm primarily used for visualization of 
relationships between measured system variables or identification of outliers. Recently, KSOMs have been used for 
prediction based on measured values associated with a best matching neuron. For example, Rustum et al. (2008) adapted a 
KSOM as a software sensor to predict biochemical oxygen demand of municipal water streams. The KSOM provided good 
agreement with conventional 5-day bioassay method in much more timely fashion. Adeloye et al. (2011) used a KSOM to 
predict reference crop evapotranspiration (ETr) in good agreement with the FAO Penman-Monteith model with much less 
meteorological input. The KSOM-based estimates of ETr were significantly superior to recommended empirical methods 
for data scarce situations. Kumar et al. (2020) compared use of FFNN and KSOM to predict crop water stress index of Indian 
mustard using only measured air temperature, relative humidity, and measured canopy temperature. The KSOM performed 
much better than FFNN with the limited data set. 

A KSOM is typically represented by a two-dimensional grid representing nodes or neurons tuned to different patterns of 
a multidimensional input vector. The principal goal of the KSOM is to transform a multidimensional input vector into a two-
dimensional discrete map while preserving the most important topological and metric relationships of the input data. To train 
the KSOM the first step is to normalize the input data to a common range using one of several techniques so that each input 
variable has equal weight, regardless of numerical magnitude. Next, a normalized input vector is chosen at random and 
presented to each of the individual neurons for comparison with their code vectors, to identify the code vector that is the 
most like the chosen input vector. The identification of the most similar neuron is based on some measure of spatial similarity 
with Euclidian distance being the most common, which is defined as: 
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where 
Di = Euclidian distance between the input vector and the weight vector of neuron i 
n = dimensionality of the input vector 
xij = jth element of the current input vector 
mij = jth element of the neuron weight vector i 
M = number of neurons (nodes) in the KSOM. 

 

The neuron whose weight vector most closely matches the input data vector (minimum Di) is chose as the winning node 
and is called the best matching unit (BMU). The vector weights of the BMU neuron and those of spatially adjacent neurons 
are adjusted to more closely match the input vector using an adjustment algorithm that moves the neurons closer spatially 
(Adebayo et al., 2011). This process allows each neuron in the map to recognize input vectors like itself.  This process gives 
rise to the term “self-organizing” because no external information is used to lead to a classification (Penn, 2005). A detailed 
mathematical and theoretical description of KSOM and its implementation can be found in Vesanto et al. (2000), Rustum et 
al. (2008) and Adeloye et al. (2012). 

The development of a KSOM requires selecting the total number of neurons to include and the row and column 
arrangement of a two-dimensional map. There are no strict rules on the number of neurons or row and column arrangement 
to use for the best KSOM. Guidance for initial development of a KSOM was suggested by Garcı́a and González (2004) with 
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the optimum total number of neurons being: 
 5M N=  (2) 

where 
N = total number of input vectors 
 

and the number of rows and columns was estimated as: 

 1 1

2 2

l e
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where 
l1 and l2 are the number of rows and columns, respectively 
e1 is the biggest eigenvalue of the training data set 
e2 is the second biggest eigenvalue 
 

The total number of nodes and row and column arrangement can be adjusted to optimize performance of the KSOM for the 
desired outcome. 

The successful development of a KSOM results in a matrix of weight values for each neuron (node) in the two-
dimensional map.  This matrix is called the codebook, which contains the captured spatial and metric elements of the data 
set.  Once the codebook is obtained, a new normalized data vector can be applied to the codebook using eqn. 1 to determine 
which neuron is the BMU. In the case of a classification problem, the classification of the BMU is the model predicted 
classification for the new input vector. A KSOM can also be used to predict unknown input vector values as indicted in 
figure 3. A new normalized data vector with missing value(s) is applied to the code book using eqn. 1 to find the BMU. The 
neuron weight values of the BMU are the estimated normalized value(s) represented by the input vector. The normalized 
weight value for the missing input vector parameter is the KSOM normalize estimate for the missing parameter, which then 
needs to be denormalized to arrive at the actual value estimate for the missing input parameter.  In this study, furrow sediment 
loss is the missing new input vector parameter.    

 
 

Table 1. Data sources used in this study along with general location where the data was collected, and number of furrows measured. 
Data source General location Number of furrows 

Fornstrom and Borrelli (1985) Worland, Powell and Torrington, WY 745 
King et al. (1984) Royal City, WA 191 

Tunio (1994) Ontario, OR 108 
O’Donkor (1978) Kimberly, ID 130 

Trout (personal communication) Patterson, CA 318 
Bjorneberg and Trout (personal communication) Kimberly, ID 592 

 
 
 

 
 

Figure 2. Process for prediction of an unknown value in an input vector using a KSOM. Adapted from Rustum and Adeloye (2007).  
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noise in the data set. The use of spatial relationships rather than a measured parameter (sediment loss) for discovering hidden 
relationships in a data set makes KSOM an attractive option for estimating furrow sediment loss. The objective of this study 
was to investigate use of KSOM to model and predict furrow sediment loss using measured data from several western U.S. 
states.  

Methods and Materials 

Database 

Measured furrow irrigation sediment loss data used in this study were obtained from a combination of published research 
reports, theses, dissertations, and personal communications with research personnel involved in furrow irrigation research 
spanning four decades. Specific data sources used in this study along with general study locations are listed in Table 1. 
Collectively, over 2000 furrow sediment loss values were obtained covering a wide range of soil, field, and row crops with 
most of the data obtained from Fornstrom and Borrelli (1985), Trout (personal communication), and Bjorneberg (personnel 
communication). The collective data set included nine common hydraulic and field condition variables: freshly cultivated 
or previously eroded by prior irrigation; compacted by wheel traffic or uncompacted; irrigation duration (T, h); furrow length 
(L, m); furrow inflow rate (Q, L min-1); furrow slope (S, %); soil sand and clay fractions (%); and furrow sediment loss (SL, 
kg). Additional details on the data sources are provided by King et al. (2016). 

The collective furrow sediment loss data set represents furrow irrigation-induced erosion across a wide range of hydraulic, 
soil, field and row crop practices in the western U.S. (Table 2). Mean furrow irrigation sediment loss for the data set was 65 
kg per furrow with a standard deviation of 138 kg per furrow, double the mean value, which reflects the wide range in values 
present in the data set (0 - 1879 kg per furrow). The data set included 1491 values for compacted (wheel) furrows and 666 
values for noncompacted (nonwheel) furrows. There were 999 values for freshly tilled furrows and 1088 values for 
previously eroded furrows. The predominate soil type was silt loam. 

 
 
Table 2. Mean, standard deviation, maximum, and minimum of furrow hydraulic and soil characteristics in the data set used in this study. 

Parameter Mean Standard deviation Maximum Minimum 
Furrow length (m) 197 109 549 27 
Furrow slope (%) 1.5 1.1 7 0.2 
Furrow inflow (L min-1) 27.5 14.0 118.4 3.2 
Sand fraction (%) 28.8 18.2 77 11 
Clay fraction (%) 18.0 7.6 48 2 
Sediment loss (kg per furrow) 65 138 1879 0 

 

KSOM modeling 

Two MATLAB (MATLAB, MathWorks, Natick, Mass.) software packages were used to design and train the KSOM in 
this study. These were the Neural Network Toolbox (MathWorks, Natick, Mass.) and the SOM toolbox (version 2.1) (Vesanto 
et al., 2000; Vatanen et al., 2015). The SOM toolbox is freely available and can be downloaded from 
https://github.com/ilarinieminen/SOM-Toolbox. Each software package has advantages and disadvantages.  For example, 
the SOM toolbox includes equations 2 and 3 for estimating the optimal size of the KSOM map while the Neural Network 
Toolbox does not. The default values for neighborhood and the learning rate of both software packages were used in this 
study. Euclidian distance (eqn. 1) was selected as the distance measure for determining the most similar neuron in both 
software packages. The data was linearly normalized to a range of 0 to 1 using the maximum and minimum values for the 
numerical parameters in the data set (table 2). Furrow surface condition information (compacted, noncompacted, tilled, 
eroded) is qualitative data, which cannot be in a utilize directly in a KSOM model as Euclidian distance (eqn. 1) cannot be 
calculated for qualitative parameters. To address this issue, furrow condition was converted to a single discrete value using 
a two-digit binary conversion as shown in table 3, which was then used in developing the KSOM model.  

 
 
 
 
 

Table 3. Furrow surface condition coding scheme for including qualitative furrow condition information in KSOM model. 
 

https://github.com/ilarinieminen/SOM-Toolbox
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Compacted 
 0=no 1=yes 

Eroded 
0 = no 1 = yes 

Furrow surface condition 
value 

0 0 0 
0 1 1 
1 0 2 
1 1 3 

 

Model evaluation 

Performance of prediction models were evaluated by comparing predicted furrow sediment loss versus measured furrow 
sediment loss. Linear regression between predicted and measured sediment loss was used as a performance measure. The 
linear regression slope was used to determine if predicted values over or under predicted measured sediment loss. The 
coefficient (R2) of determine of the regression line was used as a measure of prediction reliability. A lower R2 indicates 
higher uncertainty in predicted value. 

Data Analysis 

  Data set management and regression analysis were conducted using MSExcel. Data set statistics were computed using 
PROC MEANS (SAS 9.4, SAS Institute, 2013). Graphs were constructed using Sigmaplot 14 (Systat Software, San Jose, 
CA). 

Results and Discussion 

KSOM performance 

Initial investigation into the potential performance a KSOM to predict furrow sediment loss was conducted using the 
complete data set rather than partitioning the data set into development and validation data sets.  The data base available for 
modeling furrow sediment loss is sparse due to the difficulty involved in collecting on-farm furrow erosion data. Developing 
a KSOM model using all the full data set provides an indication of the best attainable performance, since using less data for 
model development with a limited sparse data set will decrease model prediction performance. The size of the hexagonal 
KSOM based on equations 2 and 3 was 19 x 12 for a total of 228 neurons (nodes). The initial KSOM provided poor prediction 
of furrow sediment loss (data not shown).  Since the data set was sparce, the results were grouped into regions of the 
hexagonal KSOM, which is ideal for classifying application but undesirable for a prediction application. To address this 
issue, two additionally derived parameters were included as inputs into the KSOM to disperse the data in the hexagonal map. 
With furrow irrigation, greater runoff generally results in greater furrow sediment loss since water is the sediment transport 
mechanism. In general, greater depth of water applied results in greater the runoff volume. The depth of water applied was 
calculated as: 

 

 QT
L

 (4) 

which has units of L hr min-1 m-1. The units were not reduced as it is not necessary for KSOM development. The parameter 
defined by equation 4 was included as an input parameter to the KSOM. 

Stream velocity is an important parameter when trying to quantify stream erosion and sediment transport. For a given 
flow channel geometry, flow rate and channel slope are key parameters in determining stream velocity. A measure of stream 
velocity effect on furrow erosion was calculated as: 

 
2 2Q S
L

 (5) 

which has units of L2 m-1. The parameter defined by equation 5 is consistent with the results reported by Israelsen (1946) 
where furrow erosion was an exponential function of furrow flow rate and slope with exponents greater than one. Furrow 
length was included in the equation because sediment loss indicated by Q2S2 decreases with furrow length due to infiltration 
decreasing Q. The parameter defined by equation 5 was included as an input parameter to the KSOM.   

Sediment loss prediction performance of the KSOM was improved by inclusion of the additional parameters defined by 
equations 4 and 5. The KSOM model fit to measured furrow sediment loss is shown in figure 3. One notable feature in figure 
3 is the horizontal plotting of data points. This is due to the data points being represented by a single node in the KSOM 
model. As an example, for the top horizontal set of data points in figure 3, measured sediment ranges from 134 to 1034 kg 
and ranges from 0.1 to 1349 for the horizontal set of data point second from the top in figure 3.  
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Figure 3. KSOM model predicted furrow sediment loss compared to measured furrow sediment loss. 

 
The hit histogram for the KSOM model is shown in figure 4. The model hit histogram represents the number of times a 

neuron (node) in the KSOM model is the BMU for a vector in the data set. Some KSOM model nodes are the BMU for more 
than 35 data vectors, spanning a wide range in sediment loss value, as well as other input vector values. Not all neurons in 
the KSOM model were a BMU for a vector in the data set (unshaded neurons in figure 4). This is due to the data set being 
small and sparse. 

Since flow rate is the model input parameter that has the greatest influence on furrow sediment loss, it can be used to 
adjust model predicted sediment loss associated with a given KSOM model neuron and overcome some of the effects of a 
sparse data set. Model predicted furrow sediment loss was adjusted for flow rate as: 

 

 
X

input
pred BMU

BMU

Q
SL SL

Q
 

=  
 

 (6) 

where 
SLBMU is predicted sediment loss for the BMU in the KSOM model, kg 
SLpred is predicted sediment loss adjusted for furrow flow rate 
Qinput is the model input vector value for furrow flow rate, L min-1 

QBMU is the furrow flow rate of the BMU neuron in the KSIM model, L min-1 
X is an exponent 
 
The effect of using equation 6 to adjust KSOM predicted sediment loss is shown in figure 5. The value for X was 1.2, 

which was chosen to maximize the linear regression coefficient of determination (R2). Adjusting furrow sediment loss of the 
KSOM model BMU nearly eliminated the presence of equal predicted furrow sediment loss over a wide range in measured 
sediment loss. The linear regression coefficient of determination for measured versus predicted furrow sediment loss was 
increased from 0.51 to 0.60 using equation 6. Despite this improvement, KSOM model predicted furrow sediment loss 
grossly underestimated measured sediment loss as the slope of the regression line was 0.56.  A much better estimate of 
furrow sediment loss is needed to be a useful model. 
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Figure 4. Hit histogram when the data set is applied to the KSOM model for predicting furrow sediment loss. Color of hexagonal node 

represents number of data set input vectors associated with the node. 

 
 

Figure 5. KSOM model predicted furrow sediment loss compared to measured furrow sediment loss fit when adjusted for measured furrow flow 
rate.  
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Figure 6. KSOM model predicted furrow sediment loss compared to measured sediment loss when sediment loss is not included in the model 

input vector. 

 
Predicted KSOM model furrow sediment loss when each data set vector with missing furrow sediment loss (fig. 2) was 

input to the model compared to measured sediment loss is show in figure 6. Predicted sediment loss in figure 6 was adjusted 
using equation 6 with X equal to 1.2. Prediction performance of the KSOM model decreased (reduced R2) when furrow 
sediment loss was not included in the input vector to the model. The decrease in prediction performance was the result of 
42 different BMU neurons compared to when sediment loss was included in the input vector to the KSOM model (fig. 5). 
The 42 different BMUs selected represents a prediction error rate of only 2.1% for the KSOM model when furrow sediment 
loss was not included in the input vector to the model. This result indicates that the KSOM model placed little weight on 
sediment loss for selecting a BMU neuron. This is consistent with the wide range in sediment loss associated with a BMU 
neuron (Fig. 3). The high degree of variability in measured sediment loss impairs prediction performance of the KSOM 
model even though it is an unsupervised neural network model.  

On approach to decrease the number of BMUs associated with a neuron in a KSOM model is to increase the number of 
neurons in the model.  Hexagonal KSOM models with 20 x 20 and 25 x 25 nodes were tested.  Increasing the number of 
neurons in the hexagonal map did increase KSOM model fit to the data set with the 20 x 20 map having a prediction R2 of 
0.73 and a 25 x 25 map have a prediction R2 of 0.77. The prediction BMU error rate increased when the number of nodes in 
the map increased with an error rate of 3.3% and 4.0% for KSOM map sizes of 20 x 20 and 25 x 25, respectively. These 
small error rates further highlight that the KSOM model put little weight on sediment loss in the input vector for selecting a 
BMU. This outcome suggests that perhaps sediment loss need not be included as an input to a KSOM.  

Transfer learning approach 

Transfer learning is a machine learning method where a model trained for one task is used as a starting point for solving 
a different but related problem.  For example, a deep learning model trained to recognize cars could be modified to recognize 
trucks, leveraging stored knowledge gained in recognizing cars. Since the KSOM model did not heavily weight input furrow 
sediment loss for predicting sediment loss, the KSOM model was relying on other input parameters to estimate sediment 
loss. Thus, a KSOM model could be used to cluster the input vectors of the parameters known to affect sediment loss. This 
knowledge could then be used as input to another data driven model to predict furrow sediment loss and perhaps providing 
a better estimate of furrow sediment loss. 

The transfer learning concept was implemented by training a KSOM model using the complete data set with furrow 
sediment loss omitted from the model input vector. The resulting KSOM model was used to determine the BMU neuron for  
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Figure 7.  Transfer learning predicted furrow sediment loss versus measured sediment loss based on a 19 x 12 KSOM to cluster data set vectors 

without measured sediment loss. 

 
 

Figure 8.  Transfer learning predicted furrow sediment loss versus measured sediment loss based on a 25 x 25 KSOM to cluster data set vectors 
without measured sediment loss. 
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Figure 9. Predicted furrow sediment loss versus measured sediment loss for the model development data set (right) and validation data set (left) 
for a random split of the data set. 

each data set input vector. The mean measured sediment loss and furrow flow rate of the input vectors in each BMU neuron 
was determined and assigned to each BMU. Mean BMU sediment loss was adjusted according to equation 6 (X = 1.2) to 
obtain a predicted sediment loss for each data set input vector. Predicted versus measured furrow sediment loss using a 
hexagonal 19 x 12 KSOM model is shown in figure 7. The transfer learning approach resulted in an increase in regression 
line slope and R2 relative to a KSOM model alone (fig. 5). Based on the regression line slope predicted furrow sediment loss 
was 30% less than measured sediment loss.  There are a few outliers where predicted sediment loss is highly overestimated. 
These could be true outliers in the data set or the result of the number of neurons used separate out the data set topology.  
The transfer learning approach was repeated using a hexagonal 25 x 25 KSOM model to provide finer resolution for 
clustering the data set. The greater number of neurons in the KSOM model resulted in a substantial increase in linear 
regression line slope and R2 between predicted versus measured furrow sediment loss (fig. 8). The value of X in equation 6 
that maximized slope and R2 of the linear regression line was 1.9. Using a KSOM with a 25 x 25 hexagonal map resulted in 
a regression line slope of 0.84 indicating that on average predicted sediment loss was 16% less than measured sediment loss. 
This level of prediction performance makes the model useful for predicting furrow irrigation sediment loss given the natural 
variability in the data set but represents the upper limit of what can be achieved using the transfer learning approach since 
the complete data set was used for developing the KSOM model. 

The data set was randomly divided into two separate data sets, one for KSOM model development and one for model 
validation to test the stability of the transfer learning approach. The data set division was 90% for model development and 
10% for validation. The prediction results for two random data divisions are shown in figures 9 and 10.  The results depend 
heavily upon how data vectors associated with furrow sediment losses exceeding 600 kg are split between the two data sets. 
For the two random divisions shown in figures 9 and 10, comparisons between measured and predicted furrow sediment 
loss was very similar with nearly equivalent linear regression slops and R2 in both cases, indicating that the KSOM model 
provides consistent clustering of the factors affecting furrow sediment loss, regardless of small changes in the development 
data set. Comparisons between measured and predicted sediment loss for the validation data set varied between the two 
random data divisions but provided suitable to estimation of furrow sediment loss given the amount of inherent variability 
in the data set.  

The hit histogram for a hexagonal 25 x25 KSOM for the complete data set without including measured furrow sediment 
loss in the input vectors. The unshaded hexagonal cells represent neurons that were not a BMU for any vector in the complete 
data set. Thus, with the transfer learning approach, there are no values for measured sediment loss associated with these 
neurons.  If a new data vector input to the KSOM returns a BMU without an associate measured sediment loss value, then 
no predicted value of sediment loss is available. In this situation, the second best BMU, third best BMU, and so on can be 
determined based on distance from the first BMU using equation 1 until a neuron with associated measured sediment loss 
is obtained and used to estimate furrow sediment loss. Over 50 percent of the neurons (unshaded hexagonal cells) in figure 
11 do not have an associated measured mean furrow sediment loss. However, these neurons are dispersed throughout the 25 
x 25 hexagonal map such that the nearest neuron with measured sediment loss can be readily determined. Additional furrow  
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Figure 10. Predicted furrow sediment loss versus measured sediment loss for the model development data set (right) and validation data set (left) 

for a second random split of the data set. 
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Figure 11. Hit histogram for a hexagonal 25 x25 KSOM map for the complete data without including measured sediment loss. Color of 

hexagonal node represents number of data set input vectors associated with the node. 

 

erosion data sets need to be obtained to quantify the error associated finding the nearest neuron with measured mean sediment 
value.  The KSOM model can be updated using new measured data sets when available 

  The transfer learning approach used in this study can be implemented in a spreadsheet. The KSOM codebook can be 
stored in the spread sheet and the distance between an input data vector and each neuron in the codebook can be determined 
using equation 1. The codebook neurons can be ranked based on distance with the nearest neuron corresponding to the 1st 
BMU, next nearest being the 2nd best BMU and so on.  The nearest neuron with a measured mean sediment value can 
determined using a lookup table.  The measured sediment value can be adjusted using equation 6 based on the mean flow 
rate of the BMU with the result being the predicted furrow sediment loss for the input data vector.   

 

Summary 
Historical published and unpublished data sets containing measurements of furrow irrigation sediment loss in the western 

U.S. were assembled into a furrow sediment loss data set comprising over 2000 measurements. The data set was used to 
evaluate the feasibility of using a KSOM to predict furrow irrigation sediment loss. Despite the immunity of KSOMs to 
measurement variability, the inherent variability in measured furrow sediment loss limited the ability of a KSOM model to 
reliability predict furrow sediment loss. When compared to measured furrow irrigation sediment loss, predicted furrow 
sediment loss was under predicted by 44% on average with a linear regression R2 of 0.6. The KSOM model was placing 
little weight on measured sediment loss in the input data set, indicating that it was clustering the data based on input 
parameters defining the hydraulic and soil conditions. This outcome was used to develop a transfer learning approach to 
estimating furrow sediment loss. The transfer learning approach used a hexagonal 25 x 25 KSOM to cluster similar hydraulic 
and soil conditions in the data set. The BMU of each input vector in the data set was determined using the KSOM model 
and the measured furrow irrigation sediment loss associated with the input vector(s) of a BMU was averaged to obtain a 
mean sediment for each BMU. Similarly, the furrow flow rate associated with the input vector(s) of a BMU was averaged 
to obtain a mean furrow flow rate for each BMU. A predicted value of sediment loss was obtained by applying an input 
vector to the KSOM, which determines the BMU for the input vector, the mean sediment loss associated with the BMU is 
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adjusted for any difference in input vector flow rate and the mean flow rate of the BMU resulting in the predicted value. 
When compared to measured furrow irrigation sediment loss, predicted furrow sediment loss was under predicted by 16% 
on average with a linear regression R2 of 0.82. When the data set was randomly split into model development (90%) and 
validation (10%) data sets the prediction results were similar. The transfer learning approach developed in this study can 
potentially be implemented in a spreadsheet.  
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