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HIGHLIGHTS 
 Artificial neural network modeling was used to predict crop water stress index lower reference canopy temperature. 
 Root mean square error of predicted lower reference temperatures was <1.1°C for sugarbeet and Pinot noir wine grape. 
 Energy balance model was used to dynamically predict crop water stress index upper reference canopy temperature. 
 Crop water stress index for sugarbeet was well correlated with irrigation and soil water status. 
 Crop water stress index was well correlated with midday leaf water potential of wine grape. 

ABSTRACT. Normalized crop canopy temperature, termed crop water stress index (CWSI), was proposed over 40 years ago 
as an irrigation management tool but has experienced limited adoption in production agriculture. Development of general-
ized crop-specific upper and lower reference temperatures is critical for implementation of CWSI-based irrigation sched-
uling. The objective of this study was to develop and evaluate data-driven models for predicting the reference canopy tem-
peratures needed to compute CWSI for sugarbeet and wine grape. Reference canopy temperatures for sugarbeet and wine 
grape were predicted using machine learning and regression models developed from measured canopy temperatures of 
sugarbeet, grown in Idaho and Wyoming, and wine grape, grown in Idaho and Oregon, over five years under full and severe 
deficit irrigation. Lower reference temperatures (TLL) were estimated using neural network models with Nash-Sutcliffe 
model efficiencies exceeding 0.88 and root mean square error less than 1.1°C. The relationship between TLL minus ambient 
air temperature and vapor pressure deficit was represented with a linear model that maximized the regression coefficient 
rather than minimized the sum of squared error. The linear models were used to estimate upper reference temperatures that 
were nearly double the values reported in previous studies. A daily CWSI, calculated as the average of 15 min CWSI values 
between 13:00 and 16:00 MDT for sugarbeet and between 13:00 and 15:00 local time for wine grape, were well correlated 
with irrigation events and amounts. There was a significant (p < 0.001) linear relationship between the daily CWSI and 
midday leaf water potential of Malbec and Syrah wine grapes, with an R2 of 0.53. The data-driven models developed in this 
study to estimate reference temperatures enable automated calculation of the CWSI for effective assessment of crop water 
stress. However, measurements taken under conditions of wet canopy or low solar radiation should be disregarded as they 
can result in irrational values of the CWSI. 

Keywords. Canopy temperature, Crop water stress index, Irrigation scheduling, Leaf water potential, Sugarbeet, Wine 
grape. 

 

wo key elements for effective irrigation water 
management (i.e., irrigation scheduling) are opti-
mum timing of water application and applying an 
amount of water that replaces crop evapotranspira-

tion (ET). Conventional soil water balance-based irrigation 
scheduling relies on tracking estimated crop ET, maintaining 
a continual numerical soil water balance, and irrigating when 
available soil water is forecasted to reach a predetermined 
lower limit based on crop characteristics, known soil water 
holding capacity, and known effective crop root zone depth. 
Often, soil water holding capacity and crop root zone depth 
are unknown and estimated. Soil water content monitoring 
is necessary to periodically validate or adjust the numerical 
soil water balance to minimize calculation errors introduced 
by the use of generalized ET crop coefficients and estimated 
and variable water application inefficiency (Ashley et al., 
1996; Jones, 2004; Melvin and Yonts, 2009; Werner, 1993). 
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Irrigation scheduling can also be based on frequent or con-
tinuous soil water monitoring alone and irrigating when a 
predetermined lower limit is approached to fully or partially 
replace soil water depletion, eliminating the need for main-
taining a numerical soil water balance (Hansen et al., 2007; 
Irmak et al., 2016; Vellidis et al., 2008). 

Soil water monitoring can be achieved using a variety of 
techniques, with various tradeoffs among them. Regardless of 
the selected technique, there will be a cost for the equipment, 
labor for installation, maintenance, and removal, and a cost in 
terms of the time required for the irrigation manager to inter-
pret the data. Ultimately, the manager needs a fundamental 
knowledge of soil-water-plant relationships to transform soil 
water content data into an effective irrigation scheduling de-
cision, e.g., conversion of volumetric soil water content values 
into available soil water based on site-specific soil-water char-
acteristics, crop effective rooting depth, and critical soil water 
availability threshold of the crop. Most soil water measure-
ment techniques have small sampling volumes (Muñoz-
Carpena, 2004). The relatively small sampling volumes of soil 
water measurement techniques require that multiple soil water 
sampling sites are needed to reliably quantify soil water con-
tent at the field scale for irrigation scheduling (Li et al., 2020; 
Zotarelli, 2013), but equipment and labor costs limit the num-
ber of measurement sites in practice. In drip-irrigated horticul-
tural crops such as wine grapes, root zone soil water content 
is three-dimensional (Davenport et al., 2008), which makes 
sensor placement for quantifying soil water content important. 
For example, Williams and Trout (2005) reported that nine 
neutron probe measurements in one root zone quadrant to a 
depth of 3 m were necessary to quantify soil water content of 
drip-irrigated grape vines. 

Many features of a plant’s physiology respond directly to 
changes in water status in the plant tissues rather than to 
changes in the bulk soil water availability (Jones, 2004). 
Plant canopy temperature increases when solar radiation is 
absorbed and cools when water is evaporated (transpiration) 
within the leaf structure. A water-stressed plant canopy will 
have reduced transpiration and a higher temperature than a 
non-stressed canopy (Raschke, 1960; Tanner, 1963). Infra-
red radiometers have been used to measure plant canopy 
temperature under field conditions to estimate ET and 
drought stress in many crops (Hatfield, 1983; Jackson et al., 
1981; Idso et al., 1981; Maes and Steppe, 2012). Infrared 
thermometry is nondestructive, can be measured continu-
ously, can be mounted on mobile platforms for spatial and 
temporal monitoring (Sadler et al., 2002; Nayak, 2005), and 
can be less expensive (Mahan and Yeater, 2008) than soil 
water sensing. Plant canopy temperature can be influenced 
by abiotic factors other than soil water availability as well as 
biotic factors such as disease (DeJonge et al., 2015), which 
can lead to elevated canopy temperature and potential error 
in irrigation scheduling from incorrect interpretation of the 
elevated canopy temperature. A wet canopy and/or low solar 
radiation masks the link between soil water availability and 
canopy temperature, precluding appropriate irrigation 
scheduling when the canopy is wet from irrigation or rainfall 
or cloudy conditions (Jones 1999, 2004; Bockhold et al., 
2011). Thus, canopy temperature measurement for irrigation 
scheduling is likely best suited for arid climates (Jones 

1999). Despite more than 40 years of canopy temperature-
based irrigation scheduling research, continued effort is 
needed to fully develop canopy measurement into a commer-
cially viable irrigation scheduling technique (Lo, 2018). 

Canopy temperature measurement for irrigation schedul-
ing articulated as a simple empirical relationship, called the 
crop water stress index (CWSI), was proposed nearly 40 
years ago by Idso et al. (1981) and Jackson et al. (1981). The 
CWSI is a simple linear scale ranging from 0 when, under 
identical climatic conditions, the measured canopy tempera-
ture (Tc) is equal to the well-watered canopy temperature 
(TLL) and 1 when Tc is equal to the non-transpiring canopy 
temperature (TUL). Canopy temperatures TLL and TUL are re-
spectively the lower and upper reference temperatures used 
to normalize the 0 to 1 range of the CWSI. Normalizing is 
used to account for the effects of atmospheric conditions, in-
cluding air temperature (Ta), relative humidity (RH), solar 
radiation (Rs), and wind speed (WS), on transpiration and 
canopy temperature. However, practical application of the 
CWSI has been limited by the difficulty of estimating TLL 
and TUL (Maes and Steppe, 2012). Theoretical determination 
of crop-specific constants for TLL and TUL relative to ambient 
air temperature has not been fruitful due to the poorly under-
stood and complex influences of canopy architecture and en-
vironmental conditions on the soil-plant-air continuum (Idso 
et al., 1981; Jones, 1999, 2004; Payero and Irmak, 2006). In 
the original development and application of the CWSI con-
cept, TLL and TUL were experimentally determined from field 
measurements with TLL – Ta linearly correlated with vapor 
pressure deficit (VPD) to account for major climatic effects 
confounding Tc measurements (Idso, 1982). In the initial de-
velopment and application of CWSI, canopy temperature 
measurements were restricted to times near solar noon on 
cloudless days to limit the effect of variable solar radiation 
on canopy temperature and stomatal conductance. Ideally, in 
application of the CWSI, companion plots of the crop under 
well-watered and non-transpiring conditions would be avail-
able for direct measurement of TLL and TUL. In commercial 
agriculture, use of companion plots is not feasible, nor is it 
possible to maintain a crop canopy under non-transpiring 
conditions. Alternative methods of estimating TLL and TUL 
are needed and have been investigated. In research studies, 
artificial wet and dry reference surfaces have been used suc-
cessfully to estimate TLL and TUL (Alchanatis et al., 2010; 
Cohen et al., 2005; Jones, 1999; Jones et al., 2002; Leinonen 
and Jones, 2004; O’Shaughnessy et al., 2011; Pou et al., 
2014); however, the required maintenance of the artificial 
surfaces limits their potential use for maintenance-free auto-
mation in commercial crop production. 

Physical models have been developed to estimate TLL and 
TUL with varying degrees of success (Jones, 1992) and often 
require ancillary measurements to reliably estimate equation 
parameters. Jackson et al. (1981) proposed an energy balance 
equation for Tc – Ta at the plant-atmosphere interface as: 
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where 
ra = aerodynamic resistance (s m-1) 
Rn = net radiation (W m-2) 
 = density of air (kg m-3) 
cp = heat capacity of air (J kg-1 °C-1) 
 = psychrometric constant (Pa °C-1) 
 = slope of the water saturation vapor pressure and air 

temperature relationship (Pa °C-1) 
rc = canopy resistance (s m-1) 
es = water saturation vapor pressure (kPa) at Ta 
ea = actual water vapor pressure (kPa) of the air. 
Jackson et al. (1981) also discussed the influence of plant 

and atmospheric conditions on Tc – Ta, proposing that the 
upper limit to canopy temperature can be expressed as: 
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because rc (eq. 1) of a non-transpiring canopy can be as-
sumed to increase without limit (rc  ∞) in practice. The 
relationship between Tc – Ta and es – ea (eq. 1) of well-wa-
tered crops in arid climates is often found to be linear (Idso, 
1982). Based on this observation, O’Toole and Real (1986) 
proposed formulating equation 1 as a linear function of 
VPD: 

  c a a sT T a b e e     (3) 

where a and b are the intercept and slope regression coeffi-
cients, respectively. Theoretically, estimation of the regres-
sion coefficients requires variables other than Tc, Ta, es, and 
ea to be held constant, which is impossible under field con-
ditions. O’Toole and Real (1986) reasoned that using values 
averaged over the duration of canopy temperature measure-
ment for the remaining variables in equation 1 provided a 
practical means for estimating the regression coefficients in 
equation 3. Equating equations 1 and 3 and solving for the 
average canopy resistance ( cpr ) and average aerodynamic 

resistance ( apr ) for well-watered conditions resulted in: 
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where nR  is the average Rn,   is the average , and   is 

the average  of the dataset used to determine a and b in 
equation 3. Substituting apr  for ra and nR  for Rn with meas-

ured Ta in equation 2 allows estimation of TUL. This physical 
approach to estimating TUL does not require additional crop 
physical measurements other than well-watered canopy tem-
perature and common meteorological measurements. Han et 
al. (2018) used this approach of estimating TUL to compute a 
CWSI-adjusted soil water balance for water-stressed maize 
with good results. 

Various data-driven empirical methods have been used to 
estimate TLL and TUL since the introduction of the CWSI con-
cept. Payero and Irmak (2006) used multiple linear regres-
sion (MLR) with independent variables Ta, Rs, crop height, 
WS, and VPD or RH to predict the canopy temperature of 
well-watered corn and soybean with coefficients of determi-
nation (R2) of 0.69 to 0.84 between the predicted and meas-
ured canopy temperatures. For water-stressed corn, Irmak et 
al. (2000) determined that TUL was 4.6°C to 5.1°C above air 
temperature. In several subsequent studies with crops other 
than corn, a value of air temperature plus 5.0°C has been 
used for TUL (Alchanatis et al., 2010; Cohen et al., 2005; 
Möller et al., 2007). O’Shaughnessy et al. (2011) used max-
imum daily air temperature plus 5.0°C for TUL of soybean 
and cotton. King and Shellie (2016) also obtained good re-
sults in estimating TLL using MLR for wine grapes. They 
used Ta + 15°C for TUL based on the cumulative distribution 
of maximum measured daily Tc – Ta of deficit-irrigated wine 
grapes. Regression, by necessity, simplifies complex, un-
known interactions into a priori or assumed multiple linear 
or nonlinear relationships (Payero and Irmak, 2006). King 
and Shellie (2016) also evaluated the use of artificial neural 
network (NN) models for estimating TLL of wine grape with 
better results than MLR. Artificial NNs have been used suc-
cessfully to model complex, unknown relationships and pre-
dict physical conditions, such as ET (Bhakar et al., 2006; 
Kumar et al., 2002; Trajkovic et al., 2003), irrigation sched-
uling (Karasekreter et al., 2012), and many other water re-
source applications (ASCE, 2000). 

A major obstacle to wide spread adoption of the CWSI 
concept in irrigated agriculture is the lack of regionally gen-
eralized or crop-specific relationships for TLL and TUL. Over 
the past 40 years, numerous research studies have collected 
field data and used linear regression to model the relation-
ship between Tc – Ta and VPD for numerous crops. All data-
driven models are specific to the dataset used to quantify the 
relationship between Tc – Ta and VPD and are by nature lo-
cation, climate, and year specific, limiting transferability to 
other locations. In the absence of solved physical models for 
TLL and TUL, the only recourse is to continue to develop crop-
specific generalized data-driven models. This will require an 
extensive database of Tc and associated climatic variables for 
a specific crop spanning a region over several years. The ob-
jective of the research summarized in this article was to de-
velop and evaluate general data-driven models for TLL and 
TUL for sugarbeet and wine grape in the irrigated northwest-
ern region of the U.S. The responses of daily CWSI values, 
calculated using estimated values for TLL and TUL, to irriga-
tion events were compared to that of measured available soil 
water for sugarbeet and plant water potential for wine grape 
to evaluate the performance of the data-driven models. 

MATERIALS AND METHODS 
SUGARBEET 

Study plots of sugarbeet were gown at the USDA-ARS 
Northwest Irrigation and Soils Research Laboratory 
(NWISRL) near Kimberly, Idaho, in 2014 to 2019 and at the 
University of Wyoming Powell Research and Extension 
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Center (PREC) near Powell, Wyoming, in 2018. A random-
ized block experimental design was used at each location. 
Four irrigation treatments with four replicates were evalu-
ated at NWISRL, consisting of fully irrigated (FIT), 75% 
FIT, 50% FIT, and 25% FIT. The FIT represented the con-
dition in which the crop was irrigated two or three times a 
week with a cumulative depth equal to weekly cumulative 
estimated ET. Three irrigation treatments with three repli-
cates were evaluated at PREC, consisting of FIT, 75% FIT, 
and 60% FIT. Production practices on the experimental plots 
followed local commercial practices. Estimated crop ET at 
NWISRL was based on the 1982 Kimberly-Penman alfalfa 
reference ET model and daily crop coefficients (Wright, 
1982) obtained from an Agrimet (U.S Bureau of Reclama-
tion, https://www.usbr.gov/pn/agrimet/) weather station lo-
cated within 4.5 km of the study site. Estimated crop ET at 
PREC was based on the ASCE standardized reference ET 
equation (ASCE, 2005) and daily crop coefficients (Wright, 
1982) using daily climatic data from an on-site weather sta-
tion (Sharma et al., 2018). Irrigation was applied using sprin-
kler irrigation from either lateral-move irrigation systems or 
solid set micro sprinkler system. The soil at NWISRL was a 
Portneuf silt loam (coarse-silty mixed mesic Durixerollic 
Calciorthid) classified as very deep and well drained with 
weak silica cementation ranging from 30 to 45 cm deep that 
may restrict root growth (USDA, 1998). The soil at PREC 
was a Garland loam (fine-loamy over sandy or sandy-skele-
tal, mixed, superactive, mesic Typic Haplargids) that con-
sisted of loam changing to extremely gravelly loamy sand 
below 0.8 m that hinders soil sampling, with a restrictive 
layer beyond 2.0 m (USDA, 2019). Soil water content was 
measured periodically throughout the growing season using 
neutron probes to a depth of 2.2 m in 0.15 m depth incre-
ments at NWISRL and to a depth of 1 m in 0.3 m increments 
at PREC. Additionally, at NWISRL, soil water content of the 
0 to 0.15 m soil depth was measured at 30 min intervals us-
ing time domain reflectometery (TDR 100, Campbell Scien-
tific, Logan, Utah) with two probes in the center crop row of 
a treatment plot. 

Canopy temperature was measured at both research loca-
tions using infrared radiometers (SI-121, Apogee Instru-
ments, Logan, Utah) with a 36° field of view. One radiome-
ter was used in each of two replicates of each irrigation treat-
ment (eight total) at NWISRL in 2014, 2015, and 2016, and 
one radiometer was used in each replication of the irrigation 
treatments (16 total) in subsequent years. Two paired sensors 
were used in two replications of the irrigation treatments (12 
total) at PREC. The infrared radiometers were positioned ap-
proximately 0.6 m above the canopy and oriented northeast-
erly approximately 45° from nadir with the sensor view 
aimed at the sunlit canopy surface. The infrared radiometers 
were installed when the sugarbeet crop neared full cover, 
usually in the first or second week of July. Climatic param-
eters Rs (SP-110 pyranometer, Apogee Instruments), Ta, RH 
(HMP50 temperature and humidity probe, Campbell Scien-
tific), and WS (034B, Met One Instruments, Grants Pass, 
Ore.) were measured at both locations. Canopy temperature 
and climatic parameters were measured every minute with a 

datalogger (CR1000 or CR6, Campbell Scientific) and rec-
orded as 15 min averages. The equipment was removed at 
harvest, usually mid to late September. 

WINE GRAPE 
Study plots of wine grape were grown at the University 

of Idaho Parma Research and Extension Center (UIPREC) 
near Parma, Idaho, from 2013 to 2017 and at a commercial 
vineyard near Wilderville, Oregon, in 2018 and 2019. Sev-
eral wine grape (Vitis vinifera L.) cultivars were studied at 
UIPREC, but only results for Malbec, Syrah, and Pinot noir 
are included in this article. Pinot noir was the only wine 
grape cultivar studied at the Oregon site. Row by vine spac-
ing was 2.4 m  1.8 m at UIPREC and 2.4 m  1.2 m at the 
Oregon site. At UIPREC, the vines were grown with double 
trunks on a vertically shoot positioned (VSP), two-wire trel-
lis system with moveable catch wires. The vines were trained 
to bilateral cordons and spur-pruned annually to 16 buds m-

1 of cordon. In Oregon, the vines were trained and pruned 
similarly but were trained with single trunks. Irrigation at 
both sites was applied using drip irrigation tubing suspended 
about 30 cm above ground in the vine row. Disease and pest 
control and hedging were managed according to local com-
mercial practices. Alley and vine rows were maintained free 
of vegetation at UIPREC and mowed at the Oregon site. The 
experimental design at both locations was a randomized 
block with five replicates. Alfalfa and grass reference crop 
ET were obtained from an Agrimet (U.S Bureau of Recla-
mation, https://www.usbr.gov/pn/agrimet/) weather station 
located within 4.5 km of the UIPREC study site and 50 km 
from the Oregon study site. A local industry-developed crop 
coefficient curve was used at UIPREC (King and Shellie, 
2016), while row-spacing-adjusted crop coefficients (Wil-
liams, 2014) for VSP trellises were used at the Oregon site. 
Vine water stress was monitored weekly between fruit set 
and harvest using leaf water potential (LWP) at UIPREC and 
stem water potential (SWP) at the Oregon site. Irrigation 
treatments were FIT, 70% FIT, and 35% FIT at UPREC and 
FIT, 25% FIT, and LD25 at the Oregon site. The LD25 treat-
ment was irrigated at 100% estimated crop ET (ETc) from 
irrigation initiation to the onset of ripening (veraison) and 
then at 25% of ETc from veraison to harvest. In Oregon, ir-
rigation was initiated when a plot-averaged threshold SWP 
value of -0.8 MPa was reached. After irrigation initiation, 
the vines were irrigated two or three times per week until just 
prior to harvest (late September). Measurements of SWP 
were collected using a pressure chamber (model 615, PMS 
Instruments, Albany, Ore.) as described by Levin (2019). 
Measurements of SWP were collected in each treatment plot 
near solar noon on fully expanded, sunlit leaves, with bags 
left on leaves for minimum of 10 min. The same operator 
and instrument combination was used for all measurement 
dates. Measurements of LWP at UIPREC were collected 
near solar noon on two fully expanded, sunlit leaves per 
treatment plot using a pressure chamber (model 610, PMS 
Instruments) as described by Shellie (2006). 

Canopy temperatures at both wine grape study sites were 
measured using the same infrared radiometer types as de-
scribed for sugarbeet. The radiometers were positioned ap-
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proximately 15 to 30 cm above fully expanded leaves lo-
cated at the top of the vine canopy and pointed northeasterly 
at approximately 45° from nadir, with the sensor view aimed 
at the center of solar noon sunlit leaves. The measured can-
opy area received full sunlight exposure during midday. The 
temperature sensing area was approximately 10 to 20 cm in 
diameter. The possibility of bare soil visibility in the back-
ground was limited by leaf layers within the canopy below 
the measured canopy location. The infrared radiometer sen-
sor view was periodically checked and adjusted as necessary 
to ensure that the field of view concentrated on sunlit leaves 
near the top of the canopy. The infrared radiometers were 
installed after fruit set, usually mid to late June. Two paired 
radiometers were used in FIT treatment plots and one radi-
ometer was used in three replicates of the 70% FIT and 35% 
FIT treatments at UIPREC (18 total). One radiometer was 
used in three replicates of each irrigation treatment (nine to-
tal) at the Oregon site. Climatic parameters Rs, Ta, RH, and 
WS were measured at both locations using the same sensor 
types as described for sugarbeet. Canopy temperature and 
climatic parameters were measured every minute with a dat-
alogger (CR1000 or CR6, Campbell Scientific) and recorded 
as 15 min averages. The equipment was removed prior to 
harvest, usually mid to late September. 

MODELING TLL AND TUL 
Non-water stressed canopy temperature (TLL) for sugar-

beet and for each wine grape cultivar was predicted as a 
function of climatic conditions (Rs, Ta, RH, and WS) using 
multilayer perceptron feed-forward NN models developed 
from a database of measured canopy temperatures and cli-
matic conditions at the study sites (King and Shellie, 2016). 
For sugarbeet, the database included measured canopy tem-
perature from FIT plots at NWISRL from 2014 through 2019 
and at PREC in 2018. For wine grape, the cultivar-specific 
databases included measured canopy temperature from FIT 
plots for Malbec and Syrah from 2014 through 2016 at UI-
PREC and for Pinot noir in 2015 and 2016 at UIPREC and 
in 2018 and 2019 at the Oregon site. Neural network model 
development was performed using the MATLAB Neural 
Network Toolbox (MathWorks, Natick, Mass.). The data 
were randomly subdivided into three datasets used to train, 
validate, and test the NN models. Half (50%) of the data 
were used for training, 25% for validation, and 25% for test-
ing. Model parameters (Rs, Ta, RH, WS, and Tc) were linearly 
scaled to a range of -1 to +1 based on measured maximum 
and minimum values (table 1), which is a typical procedure 
to facilitate convergence to NN model solution, and the Le-
venberg-Marquardt backpropagation method was used to 
solve for model coefficients (MATLAB Neural Network 
Toolbox, MathWorks, Natick, Mass.). Hidden layer neurons 
in the NN model used a hyperbolic tangent activation func-
tion, and the single output neuron used a linear activation 

function. The NN model included only one hidden layer. The 
number of hidden neurons was selected by trial and error 
based on minimizing the sum of squared errors between 
measured and predicted TLL, while using a minimum number 
of neurons to reduce the risk of over-training the NN model 
to the dataset. This resulted in NN models using four hidden 
neurons for sugarbeet and five hidden neurons for wine 
grape. 

Non-transpiring canopy temperature (TUL) was estimated 
using the approach of O’Toole and Real (1986) (eqs. 1 to 5) 
using measured well-watered canopy temperature of the FIT 
and associated climatic parameters. Regression analysis was 
applied to a multi-year dataset of well-watered canopy tem-
perature and VPD to solve for coefficients a and b in equation 
3. Average aerodynamic resistance ( apr ) was calculated us-

ing equation 4 and regression values a and b. Equations given 
by ASCE (2005) were used to compute es, ea,  , and  from 

measured Ta and RH. Average net radiation ( nR )was esti-

mated as a linear function of Rs based on net radiation meas-
urements collected in other field studies of sugarbeet and 
wine grape by the authors. Non-transpiring canopy tempera-
ture (TUL) was calculated for a 15 min period using equation 
2 with apr  and calculated 15 min average values for Rs and  

from measured 15 min average values of Rs, Ta, and RH. 
The integrity of the measured canopy temperature data 

was evaluated to ensure that only dry canopy conditions 
were included in the dataset used for TLL NN model devel-
opment and evaluation and determination of apr . This was 

accomplished by omitting measured canopy temperature 
data for times of suspected wet canopy conditions based on 
rain gauge data and irrigation records. 

Daily canopy temperature and climatic conditions within 
-1 to +2.5 h of solar noon were used in this study to charac-
terize water stress. In sugarbeet, wilting is prevalent after so-
lar noon when water stressed, with the duration and fre-
quency of wilting indicative of tuber and sucrose yield im-
pacts (Martin et al., 2007). This characteristic wilting sug-
gests that -1 to +2.5 h of solar noon is when canopy temper-
ature might be most indicative of plant water stress. The di-
urnal trend in LWP of wine grape is a minimum near solar 
noon and has been found to be well correlated with canopy 
temperature (van Zyl, 1987). The characteristic minimum 
LWP near solar noon is the basis for the use of midday LWP 
or SWP as a standard measure of grape vine water stress for 
irrigation management (Levin, 2019; Williams and Baeza, 
2007). Based on this information, data within -1 to +2.5 h of 
solar noon were selected to quantify plant water stress using 
canopy temperature. Models to estimate TLL and TUL were 
developed using measured data (Rs, Ta, RH, and WS) within 
-1 to +2.5 h of solar noon in their development. Conse-
quently, model predictions are only valid for this time frame. 

Table 1. Maximum and minimum measured values for climatic parameters and canopy temperature used in development of neural network 
models for predicting well-watered canopy temperature of sugarbeet and Pinot noir wine grape. 

Crop 

Solar Radiation 
(W m-2) 

 

Air Temperature 
(°C) 

 

Relative Humidity 
(%) 

 

Wind Speed 
(m s-1) 

 

Canopy Temperature 
(°C) 

Max Min Max Min Max Min Max Min Max Min 
Sugarbeet 1120 28  36.4 7.7  99 7  8.6 0.3  28.8 7.1 
Pinot noir 1038 31  37.0 14.5  61 10  5.3 0.3  34.3 16.2 
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A daily CWSI value was calculated as the average of the 
twelve 15 min computed CWSI values between 13:00 and 
16:00 MDT for sugarbeet and the average of the nine 15 min 
computed CWSI values between 13:00 and 15:00 local day-
light time for wine grape. The shorter time interval for wine 
grape corresponded to -1 to + 1.5 h of solar noon and was 
selected to reduce the possibility of leaf shading based on 
visual observations. 

MODEL EVALUATION 
The effectiveness of model predictions for TLL was as-

sessed using four goodness-of-fit measures: Nash-Sutcliffe 
model efficiency (NSE), mean absolute error (MAE), root 
mean squared error (RMSE), and percent bias (PBIAS). The 
NSE is a normalized statistic that expresses the relative mag-
nitude of the residual variance to the measured data variance 
(Nash and Sutcliffe, 1970). It is defined as: 
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where 
Pi = model prediction for a measured value (Oi) 
O  = mean of the measured values 
n = number of values. 
The NSE quantifies the predictive efficacy of a model and 

can range from –∞ to 1, where a value of 1 indicates Pi = Oi 
for all measured data. A value nearer 1 indicates better 
model prediction efficacy. A negative value indicates that 
the mean of the observations is a better predictor of Oi than 
the model. 

The MAE quantifies the average magnitude of model pre-
diction error absolute values. It is defined as: 
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A smaller MAE indicates better model prediction perfor-
mance. 

The RMSE is the sample standard deviation of the differ-
ences between predicted and observed values. It is defined 
as: 
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A smaller RMSE indicates better model prediction per-
formance. 

The PBIAS is a measure of how much the fitted model 
over- or underpredicts the observed values. The PBIAS is 
calculated as (Yapo et al., 1996): 
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Values for PBIAS range from -∞ to ∞, with an optimal 
value of zero; however, values close to zero can occur if the 
fitted model overpredicts as much as it underpredicts (Mori-
asi et al., 2007). 

DATA ANALYSIS 
Linear and multiple linear regression was conducted us-

ing Microsoft Excel data analysis tools. Graphical, linear, 
and multiple linear regression and variance analysis were 
used to quantify and evaluate the performance of the predic-
tion models. Regression line significance was evaluated us-
ing ANOVA (p  0.05). Equality of variances was evaluated 
using a Levine test when data were normally distributed and 
a non-parametric Levene test (Nordstokke and Zumbo, 
2010; Nordstokke et al., 2011) when data were not normally 
distributed. Normal Q-Q plots, histograms, and Shapiro-
Wilk tests (p  0.05) were used to assess if data were approx-
imately normally distributed. Graphs were generated using 
Sigmaplot 14 (Systat Software, San Jose, Cal.). 

RESULTS AND DISCUSSION 
SUGARBEET 

The study sites had a wide range of climatic conditions (ta-
ble 1), leading to a wide range in VPD (fig. 1) and measured 
well-watered canopy temperatures (table 1) in the FIT plots. 
The linear correlation between Tc  Ta and VPD measured be-
tween 13:00 and 16:00 MDT was significant (p  0.001), with 
a coefficient of determination (R2) of 0.70 (fig. 1). The high 
degree of variability shown in figure 1 for Tc  Ta at any given 
value of VPD illustrates a strong influence of additional fac-
tors on leaf temperature other than soil water availability. The 
small grouping of data values above the bulk data at VPD of 
~3.7 kPa occurred during a high wind event exceeding 6 m s-

Figure. 1. Relationship between measured canopy temperature minus
air temperature and vapor pressure deficit for sugarbeet in fully irri-
gated treatments (FIT) at both study sites (n = 3386). 
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1 at site 1, which may have decreased stomatal conductance, 
reducing the transpiration rate and increasing canopy temper-
ature despite adequate soil water availability. 

The NN model developed to predict TLL using input vari-
ables Ta, Rs, RH, and WS measured between 13:00 and 16:00 
MDT was significant (p  0.001), with a coefficient of de-
termination (R2) of 0.88 between measured and predicted TLL 
(fig. 2) in the FIT plots. The NN model was a much better 
predictor of TLL than a linear model. The NSE, RMSE, MAE, 
and PBIAS of the NN model were 0.88, 1.07°C, 0.82°C, and 
0, respectively. For the NN model, all the prediction perfor-
mance parameters were equal to or better than the results for 
a multiple linear regression (MLR) model (data not shown), 
indicating that NN modeling was better than MLR for pre-
dicting TLL. The linear regression equation slope for pre-
dicted versus measured TLL was significantly (p < 0.001) dif-
ferent from 1 (0.87, fig. 2), indicating a bias in predictions 
despite PBIAS = 0. The NN model overpredicted TLL for 
well-watered canopy temperatures <20°C and underpre-
dicted for well-watered canopy temperatures >25°C. 

 The dataset used to determine the linear relationship be-
tween Tc  Ta and VPD (eq. 3) for estimating average aero-
dynamic resistance ( apr  in eq. 4) is shown in figure 3. The 

difference between the datasets in figures 1 and 3 is the re-
moval of Tc  Ta when Rs was <750 W m-2 to eliminate the 
possible inclusion of data when canopy resistance was in-
creased due to reduced sunlight and actual ET was less than 
potential ET. Data values for high wind conditions (WS > 5.5 
m s-1) were also removed to eliminate the possible influence 
of high wind on canopy resistance. Linear regression of the 
resulting Tc  Ta versus VPD dataset (fig. 3), with coefficient 
of determination (R2) of 0.85 (p < 0.001), resulted in a slope 
of 3.02°C kPa-1 and intercept of 4.92°C. Dataset (fig. 3) val-
ues for  ,  , and  were 212.8 Pa °C-1, 60.6 Pa °C-1, and 

1.05 kg m-3, respectively, and the value of cp was taken as 
1013 J kg-1 °C-1. Net radiation was not directly measured in 
any study year but calculated from measured 15 min aver-
aged data collected at PREC in 2017 as part of a Bowen ratio 
study in sugarbeet. The linear relationship between measured 
Rn and Rs at PREC was Rn = 0.65Rs + 14.7, with an R2 of 0.95. 

This relationship was used to calculate Rn from 15 min aver-
aged values of Rs for both sites. Based on this relationship, 
the dataset (fig. 3) value for nR  was 573 W m-2. Substituting 

dataset average values into equations 4 and 5 resulted in apr  

= 25.4 s m-1 and cpr  = 24.4 s m-1. Substituting the appropriate 

values into equation 2 resulted in TUL – Ta = 13.7°C. These 
values are quite sensitive to the slope and intercept of the re-
gression equation through the dataset. Using sugarbeet can-
opy temperature data from Idso (1982), O’Toole and Real 
(1986) calculated apr  = 8.8 s m-1 and cpr  = 37.6 s m-1, which 

leads to TUL – Ta of about 4.5°C, substantially less than the 
13.7°C obtained in this study. The dataset of Idso (1982) was 
comprised of 47 data values over a VPD range of 1.5 to 4.1 
kPa, resulting in a regression slope of -1.96°C kPa-1, which is 
much less than the slope found in this study using 1989 data 
values spanning a larger range in VPD. The dataset of 
Sepaskhah et al. (1988) was comprised of 77 values over a 
VPD range of 1.4 to 4.8 kPa, resulting in a regression slope 
of -2.6, which for the average climatic conditions of this 
study resulted in TUL – Ta = 8.5°C. The datasets of Idso (1982) 
and Sepaskhah et al. (1988) are enveloped within the dataset 
collected in this study (fig. 3). The sensitivity of TUL – Ta to 
regression line slope underscores the need for a large dataset 
over a wide range in VPD to obtain a reliable estimate of TUL 
– Ta using the approach of O’Toole and Real (1986). Data 
over a limited range in VPD are not adequate for reliable es-
timation of TUL – Ta. The regression line slope is sensitive to 
data for VPD < 1.5 kPa. 

Measured Tc – Ta versus VPD for Rs  750 W m-2 (fig. 3) 
diverged from a linear relationship for VPD < 1.0 kPa and for 
VPD > 4.5 kPa. A quadratic equation provided a slightly bet-
ter fit (R2 = 0.86, not shown) to the data than a linear equation. 
When VPD is <1.0 kPa, the vapor pressure gradient across 
the leaf surface boundary begins to limit the latent heat trans-
fer rate, causing the leaf surface temperature to increase to 
maintain the energy balance between radiant, latent, and con-
vective heat exchange with the environment. When VPD is 
>4.5 kPa, latent heat transfer (transpiration) becomes limited 

Figure 2. Neural network (NN) prediction of sugarbeet canopy temper-
ature (TLL) compared to measured canopy temperature in fully irri-
gated treatments (FIT) at both study sites (n = 3386). 

Figure 3. Relationship between measured canopy temperature minus
air temperature and vapor pressure deficit for sugarbeet in fully irri-
gated treatments (FIT) and linear relationship used to estimate upper
reference temperature (TUL) for both study sites (n = 1989). 
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by energy availability, limiting cooling and resulting in a 
lower limit for TLL – Ta. The dataset of Sepaskhah et al. (1988) 
had a similar trend for VPD > 4.5 kPa. 

Values of CWSI at 15 min periods between 13:00 and 
16:00 MDT were calculated for all irrigation treatments using 
the NN model to predict TLL for measured 15 min average val-
ues of Rs, Ta, RH, and WS, and TUL was calculated (eq. 2) us-
ing 15 min average values for Rn and  and apr  = 25.4 s m-1. 

Daily CWSI values for sugarbeet calculated with the 
methods developed in this study are shown in figures 4 and 
5 for the NWISRL and PREC sites, respectively. Example 
daily CWSI values, computed as the average 15 min CWSI 
between 13:00 and 16:00 MDT, are shown in figure 4 along 
with daily irrigation plus precipitation amounts and available 
soil water (ASW) for the 25% FIT in 2015 at NWISRL. 
Daily CWSI was <0.1 before mid-July and rapidly increased 
and oscillated between 0.2 and 0.4 in response to small fre-
quent irrigation amounts until mid-August. Daily CWSI then 
increased to 0.5 by the end of August in response to about a 
week without irrigation when ASW decreased to <45%. 
Daily CWSI remained below 0.4 through mid-September 
despite continued decrease in ASW below 45%. This is 
likely due to a gradual reduction in daily ET rate near the 
end of the growing season and rehydration of the crop over-
night, supported by a 2.2 m root zone depth. Daily CWSI 
briefly decreased to 0.1 in mid-September in response to pre-
cipitation, reduced ET, and irrigation. Daily CWSI then rap-
idly increased to 0.5 by the end of September due to withheld 
irrigation for a week and ASW well below 45%. Over the 
season, daily CWSI decreased minimally following an irri-
gation event due to the small irrigation applications (<8 mm) 

by the lateral-move irrigation system. The minimal reduction 
in daily CWSI from irrigation likely resulted from a substan-
tial fraction of applied water evaporating from the crop and 
soil surface rather than entering the soil profile. 

Daily CWSI at PREC in 2018 for the 60% FIT treatment 
(fig. 5) varied between 0 and 0.9 in response to water applica-
tion. Daily CWSI was >0.8 in mid-July due to lack of irriga-
tion resulting from an irrigation equipment failure at the end 
of June. Available soil water was below 45% in mid-July (fig. 
5), resulting in daily CWSI exceeding 0.8. Daily CWSI rap-
idly decreased to <0.1 by the end of July due to several irriga-
tion events. Available soil water stabilized but did not substan-
tially increase. In the first week of August, daily CWSI rapidly 
increased to nearly 0.8 when irrigation frequency decreased. 
Three irrigations between 18 and 27 July, which rapidly de-
creased daily CWSI, likely restored soil water in the top 0.15 
m of the soil profile that was not fully detected by the neutron 
probe soil water measurements. Limited soil water stored in 
the 0.15 m soil profile was readily removed by the sugarbeet 
crop, and daily CWSI rapidly increased during early August. 
Two irrigation events between 10 and 15 August stabilized 
daily CWSI, and the two irrigations between 16 and 20 August 
decreased daily CWSI to zero and increased ASW slightly. 
During the first ten days of September, daily CWSI rapidly 
increased to 0.8 due to the lack of irrigation, which likely de-
pleted soil water in the top 0.15 m of the soil profile and de-
creased measured soil water content. Available soil water 
reached a minimum on 11 September, and daily CWSI 
reached a maximum of 0.9. Daily CWSI was much more dy-
namic at PREC than at NWISRL due to limited soil water stor-
age resulting from less water holding capacity of the gravelly 
loam soil profile and the <1 m root zone depth. 

Figure 4. Crop water stress index and available soil water of sugarbeet
in response to irrigation timing and amounts to the 25% FIT at
NWISRL (Kimberly, Ida.) in 2015. Vertical bars represent standard
errors of the measurements. 

Figure 5. Crop water stress index and available soil water of sugarbeet
in response to irrigation timing and amounts of the 60% FIT at PREC
(Powell, Wyo.) in 2018. Vertical bars represent standard errors of the
measurements. 
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WINE GRAPE 
The study sites for Pinot noir had very similar growing 

season climatic conditions, potentially limiting transferabil-
ity of derived data-driven models to a reduced range of cli-
matic conditions compared to that for sugarbeet. The pri-
mary deficiency was an absence of measured data for VPD 
< 1.0 kPa (fig. 6). The linear correlation between Tc  Ta and 
VPD measured between 13:00 and 15:00 local daylight time 
for Pinot noir was significant (p  0.001), with a coefficient 
of determination (R2) of 0.54 (fig. 6). The linear relationship 
was very similar to that reported by Bellvert et al. (2014) for 
Pinot noir in the first year of their study. The high degree of 
variability for Tc  Ta at any given value of VPD illustrates 
a strong influence of additional factors on leaf temperature 
other than soil water availability. Similar relationships were 
found between Tc  Ta and VPD for wine grape cultivars 
Malbec, Syrah, Merlot, Chardonnay, Cabernet Franc, and 
Cabernet Sauvignon (data not shown) grown at UIPREC. 

The NN model developed to predict TLL using input vari-
ables Ta, Rs, RH, and WS measured between 13:00 and 15:00 
local daylight time was significant (p  0.001), with a coef-
ficient of determination (R2) of 0.90 between measured and 
predicted TLL (fig. 7). The NSE, RMSE, MAE, and PBIAS 
of the NN model were 0.90, 0.98°C, 0.74°C, and 0.2, respec-
tively. The linear regression equation slope for predicted 
versus measured TLL was significantly (p  0.001) different 
from 1 (0.89, fig. 7), indicating a bias in predictions despite 
PBIAS = 0.2. The NN model overpredicted well-watered 
canopy temperatures <25°C and underpredicted well-wa-
tered canopy temperatures >30°C. 

The dataset (fig. 8) used to estimate TUL based on the ap-
proach of O’Toole and Real (1986) (eqs. 1 to 5) differs from 
figure 7 due to the removal of Tc  Ta when Rs was <750 W 
m-2 to eliminate the possible inclusion of Tc values where 
actual ET was less than potential ET. Linear regression of 
the dataset in figure 8 (R2 = 0.71, p  0.001) resulted in a 
slope of -1.85°C kPa-1 and intercept of 4.85°C. The linear 
relationship is nearly identical to the two-year average re-
ported by Bellvert (2014) for Pinot noir. The resulting linear 
regression line does not visually represent the trend in the 

data but minimizes the sum of squared prediction errors as-
sociated with the specific dataset. Thus, estimation of TUL 
using the linear regression model will likely result in the es-
timated value being specific for the data collected in this 
study, limiting transferability to other regions. The lack of 
canopy temperature measurements for VPD < 1 kPa greatly 
increases the likelihood of the linear regression line errone-
ously representing the underlying trend in the data. A possi-
ble solution to this issue is to use a linear model of the data 
that maximizes the correlation coefficient (Livadiotis and 
McComas, 2013). Maximizing the correlation coefficient of 
a linear line through the dataset resulted in a slope of 2.50°C 
kPa-1 and intercept of 6.2°C, with an R2 of 0.79. Had canopy 
temperature measurements been collected for VPD < 1 kPa, 
based on the dataset for sugarbeet (fig. 3), the linear model 
corresponding to maximizing the correlation coefficient 
would likely be a better representation of the data than the 
linear regression line. Incidentally, the linear regression line 
for sugarbeet (fig. 3) also maximized the correlation coeffi-
cient. Dataset (fig. 8) values for  ,  , and  were 230.0 Pa 

Figure 6. Relationship between measured canopy temperature minus
air temperature and vapor pressure deficit for Pinot noir wine grape in
fully irrigated treatments (FIT) at both study sites (n = 1779). 

Figure 7. Neural network (NN) prediction of Pinot noir canopy temper-
ature (TLL) compared to measured canopy temperature in fully irri-
gated treatments (FIT) at both study sites (n = 1779). 

 

 

Figure 8. Relationship between measured canopy temperature minus
air temperature and vapor pressure deficit for Pinot noir wine grape in 
fully irrigated treatments (FIT) and linear relationship used to estimate
upper reference temperature (TUL) for both study sites (n = 1417). 
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°C-1, 59.0 Pa °C-1, and 1.01 kg m-3, respectively, and the 
value of cp was taken as 1013 J kg-1 °C-1. Net radiation of 
Malbec vines was measured in 2018 and 2019 at UIPREC. 
The linear relationship between measured Rn and Rs at UI-
PREC was Rn = 0.9Rs – 60, with an R2 of 0.95. This relation-
ship was used to calculate Rn from 15 min averaged values 
of Rs for both study sites. Based on this relationship, the 
value for nR was 711 W m-2 for the dataset in figure 8. Sub-

stituting dataset average values into equations 4 and 5 re-
sulted in apr  = 21 s m-1 and cpr  = 39.6 s m-1. Substituting the 

appropriate values into equation 2 resulted in TUL – Ta = 
14.6°C. This is double the value for TUL – Ta used by Bellvert 
(2014) to calculate the CWSI of Pinot noir. 

 The approach of O’Toole and Real (1986) (eqs. 1 to 5) was 
also used to estimate TUL for wine grape varieties Malbec and 
Syrah grown at UIPREC. Measured canopy temperature da-
tasets for Rs > 750 W m-2 are shown in figures 9 and 10 for 
Malbec and Syrah, respectively. A linear model that maxim-
izes the correlation coefficient for the dataset was used to es-
timate TUL. The linear model for Malbec had a slope of -
2.33°C kPa-1 and intercept of 5.1°C, with an R2 of 0.78 (fig. 
9), and the linear model for Syrah had a slope of -2.2°C kPa-1 
and intercept of 4.6°C, with an R2 of 0.79 (fig. 10). Dataset 
values for  ,  , and  for both Malbec and Syrah were 

229.3 Pa °C-1, 63.0 Pa °C-1, and 1.08 kg m-3, respectively, and 
the value of cp was taken as 1013 J kg-1 °C-1. The value for nR  

was 702 W m-2 for both Malbec and Syrah. Substituting da-
taset average values into equations 4 and 5 resulted in apr  = 

16.8 s m-1 and cpr  = 34.5 s m-1 for Malbec and apr  = 14.5 s 

m-1 and cpr  = 37.4 s m-1 for Syrah. Substituting the appropriate 

values into equation 2 resulted in TUL – Ta = 11.4°C for Malbec 
and 9.3°C for Syrah. Computed values of TUL – Ta are very 
sensitive to the slope and intercept of the linear models se-
lected for Tc – Ta versus VPD. 

Daily CWSI values for Malbec 70% FIT and 35% FIT at 
UIPREC in 2015 computed as the average 15 min CWSI be-
tween 13:00 and 15:00 MDT are shown in figure 11 along 

with daily irrigation and precipitation amounts. Wine grape 
irrigation in the region normally begins near the first week in 
July after fruit set. Daily CWSI for 35% FIT was near 0.6 
when canopy temperature measurement started and then de-
creased slightly following irrigation events exceeding 35 mm 
in the first half of August. Daily CWSI for 35% FIT remained 
<0.5 through September but increased after irrigation was ter-
minated at the end of September. The daily CWSI pattern for 
70% FIT was similar to that of 35% FIT, as it decreased in the 
last half of July to <0.3 in response to irrigation events exceed-
ing 50 mm. The daily CWSI for 70% FIT then increased to 
nearly equal the daily CWSI for 35% FIT through mid-Sep-
tember. The 50% difference in irrigation amounts between 
35% and 70% FIT only resulted in minimal differences in 
daily CWSI between treatments through mid-September. 
Daily CWSI of both irrigation treatments decreased following 
an irrigation event. However, the CWSI of 35% FIT increased 
sooner and more rapidly after an irrigation event due to half 
as much irrigation applied. Daily CWSI showed the dynamic 
interaction between irrigation, soil water availability, and 
plant water stress throughout the irrigation season. 

Figure 10. Relationship between measured canopy temperature minus
air temperature and vapor pressure deficit for Syrah wine grape in
fully irrigated treatments (FIT) and linear relationship used to estimate 
upper reference temperature (TUL) (n = 1345). 

Figure 11. Crop water stress index of Malbec wine graph at Parma,
Idaho, in 2014 in response to irrigation timing and amounts for 70%
FIT and 35% FIT (I+P = irrigation plus precipitation). 

Figure 9. Relationship between measured canopy temperature minus
air temperature and vapor pressure deficit for Malbec wine grape in
fully irrigated treatments (FIT) and linear relationship used to estimate
upper reference temperature (TUL) (n = 1023). 
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The relationship between daily CWSI and midday leaf wa-
ter potential (LWP) of Malbec and Syrah at UIPREC over a 
three-year period (2014, 2015, and 2016) is shown in figure 
12. A linear relationship between daily CWSI and LWP was 
significant (p < 0.001), with an R2 of 0.53. A quadratic rela-
tionship between CWSI and LWP averaged over four wine 
grape cultivars was reported by Bellvert et al. (2015). Despite 
a significant linear relationship between CWSI and LWP (fig. 
12), there is considerable variability in the relationship, which 
precludes use of CWSI as a direct surrogate for LWP. The 
same degree of variability was present in the relationship re-
ported by Bellvert et al. (2015). One source of variability in 
the relationship is the operator judgement aspect of LWP and 
SWP measurements (Levin, 2019). Multiple operators col-
lected LWP measurements at UIPREC in 2016, which likely 
introduced some variability in the LWP measurements. Wil-
liams and Baeza (2007) reported LWP ranging from -0.51 to 
-1.15 MPa for well-watered grapevines in California, with 
LWP linearly related to VPD and Ta. They also reported a lin-
ear relationship between LWP and VPD for water-stressed 
vines, but with reduced dependence on VPD compared to 
well-watered vines. The results of this study are consistent 
with the findings of Williams and Baeza (2007), as the rela-
tionship between CWSI and LWP (fig. 12) could be repre-
sented by a piece-wise linear relationship with CWSI ≈ 0 for 
LWP > -1.15 MPa. Solar radiation also influences LWP (Wil-
liams and Baeza, 2007), and LWP measurements should be 
collected on cloudless days. The LWP values reported in this 
study were made over a wide range in VPD and on days with 
variable clouds. The combination of multiple operators and a 
wide range in VPD, solar radiation, temperature, and evapo-
rative demand during LWP measurements accounts for some 
of the variability in the relationship between CWSI and LWP. 
Additionally, some LWP values reported in this study were 
not collected on the same vine used for canopy temperature 
measurement, another source of variability in the relationship 
between CWSI and LWP (fig. 12). Overall, the presence of 
water stress detected by LWP measurement was also indicted 
by daily CWSI as calculated in this study, demonstrating that 
CWSI can be effectively used as an irrigation management 
tool for wine grape. The primary advantage of using CWSI as 

an irrigation management tool is the ability to automate data 
collection for daily monitoring of water stress with minimal 
labor. 

The interaction between midday stem water potential 
(SWP) and average daily CWSI of Pinot noir at the south-
west Oregon study site is shown in figure 13 for two irriga-
tion treatments. For 25% FIT, daily CWSI was <0.1 at the 
end of June and steadily increased to 0.4 by the end of July. 
Concurrently, SWP was greater than -0.6 MPa at the end of 
June and steadily decreased to -1.4 MPa by the end of July. 
Near the first of August, an irrigation event quickly de-
creased the daily CWSI to <0.1, and SWP increased to ex-
ceed -0.7 MPa. During the first half of August, daily CWSI 
rapidly increased to 0.6, and SWP decreased to less than -1.4 
MPa. From mid-August through mid-September, daily 
CWSI decreased to <0.1, and SWP increased to -0.6 MPa. 
For the 25% late deficit irrigation treatment (LD25), daily 
CWSI was near 0.2 through mid-July, and SWP was greater 
than -0.6 MPa. Throughout July, the CWSI ranged between 
0.2 and 0.4, and SWP ranged between -1.3 and -0.6 MPa. In 
mid-August, daily CWSI increased to 0.7, and SWP de-
creased to -1.4 MPa. Daily CWSI then decreased to <0.3, 
and SWP increased to -0.6. In general, an increase in daily 
CWSI was accompanied by a decrease in SWP in the irriga-
tion treatments, indicating that daily CWSI was an effective 
indicator of vine water stress at the Oregon study site. 

The data-driven models developed in this study to esti-
mate reference temperatures (TLL and TUL) permit calculation 
of CWSI for effective assessment of crop water stress with 
minimal labor requirement. The methodology used in this 
study to calculate daily CWSI can be automated for use as a 

Figure 12. Relationship between crop water stress index and midday
leaf water potential for Syrah and Malbec wine grape at Parma, Idaho,
over three years (2014, 2015, and 2016). 

Figure 13. Relationship between crop water stress index and midday
stem water potential for Pinot noir wine grape under two irrigation
treatments (25% FIT and LD25) in southwestern Oregon in 2019. 
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daily irrigation management tool; however, the methodology 
is not fool-proof. The CWSI value can be less than zero or 
greater than one (<0 or >1) under certain conditions. Wet can-
opy conditions result in measured canopy temperature less 
than TLL predicted by the NN model. This results in a negative 
CWSI value, preventing assessment of crop water stress, re-
gardless of soil water availability. The original development 
of the CWSI concept by Idso et al. (1981) was limited to clear 
sunny conditions. However, the data-driven NN models de-
veloped in this study are based on well-watered canopy tem-
peratures measured under variable cloudy conditions and pre-
dict TLL for variably cloudy conditions, enhancing the effi-
cacy of the CWSI concept. While the NN models developed 
for predicting TLL are valid for solar radiation <100 W m-2 
(table 1), TUL predicted using equation 2 for low levels of so-
lar radiation can be approximately equal to TLL, resulting in 
CWSI values <0 or >1. In this study, solar radiation <200 W 
m-2 often resulted in CWSI values <0 or >1. Bockhold (2011) 
also found that solar radiation >200 W m-2 was necessary to 
reliably use canopy temperature measurement for irrigation 
scheduling. Automated calculation of CWSI using the meth-
odology of this study would need to check for wet canopy or 
low solar radiation conditions and omit calculation of CWSI 
for the day if determined to be problematic. 

Use of the methodology proposed by O’Toole and Real 
(1986) to estimate TUL for sugarbeet and multiple wine grape 
cultivars in this study resulted in average values of TUL that 
were approximately double the values used in other studies. 
Rather than using traditional regression to fit a linear model 
to measured data, a linear model that maximized the correla-
tion coefficient was used for wine grape due to the absence 
of measured data for VPD < 1 kPa. The method of O’Toole 
and Real (1986) uses the slope and intercept of a linear model 
of measured data to estimate an average value for ra in equa-
tion 4. A linear model that estimates the underlying trend in 
measured data is needed to provide an estimate of apr  that is 

transferrable to other regions. Linear regression is strictly de-
pendent on measured data and can be a biased estimate of the 
underlying trend in the dataset, particularly if only a small 
number of values are collected or if the measured data do not 
include the complete range of the possible values. In this 
study, measured data for sugarbeet included nearly the com-
plete range of VPD values possible; hence, the linear regres-
sion model also maximized the correlation coefficient and 
captured the underlying trend in the data. This was not the 
case with wine grape, so a linear model that maximized the 
correlation coefficient was used to estimate ra to increase the 
likelihood of transferability to other regions. Estimates of ra 
using a linear model that maximizes the correlation coeffi-
cient between TLL – Ta and VPD resulted in values of TUL con-
sistent with the maximum measured values of Tc in severely 
water-stressed plots and constrained the computed values of 
CWSI within the range of 0 to 1 in these cases, validating the 
values of TUL obtained in this study. 

The models developed in this study and their demon-
strated performance are based on historical data collected at 
multiple locations. These models can be directly applied to 
estimate TLL and TUL of sugarbeet and wine grape cultivars 
Pinot noir, Malbec, and Syrah in irrigated regions of the 

northwestern U.S. The models can be readily incorporated 
into CWSI-based irrigation scheduling models applied to 
these crops in the region. The models can also be easily in-
corporated into standalone spreadsheet models to estimate 
TLL and TUL of these crops. The models can be extended to 
other locations by addition of a few hundred data values (Rs, 
Ta, RH, WS, and TLL) collected at the new location for each 
crop. The modeling concepts can be readily extended to 
other crops by collection of addition crop-specific data (Rs, 
Ta, RH, WS, and TLL). 

CONCLUSIONS 
Canopy temperatures of sugarbeet, grown in Idaho and 

Wyoming, and wine grape, grown in Idaho and Oregon, over 
five years under full and severe deficit irrigation were meas-
ured concurrent with climatic conditions. Neural network 
models were developed to estimate well-watered canopy tem-
perature based on measured solar radiation, ambient air tem-
perature, relative humidity, and wind speed. Neural network 
models with one hidden layer with four neurons for sugarbeet 
and five neurons for wine grape provided excellent predic-
tions of well-watered canopy temperature. The NSE of the 
models were equal to or greater than 0.88, with RMSE was 
less than 1.1°C. The relationship between TLL – Ta and VPD 
was modeled using a linear function that maximized the cor-
relation coefficient rather than minimizing the sum of squared 
prediction error to better estimate the overall trend in the rela-
tionship rather than maximize the fit to the measured data. The 
intercept and slope of the linear model were used to estimate 
the average aerodynamic resistance of the crop canopy, which 
was used to estimate TUL as a function of net radiation, density 
of the air, and heat capacity of the air. Resulting values for TUL 
were nearly double the values reported in previous studies of 
CWSI for irrigation management of sugarbeet and wine grape. 
Use of greater TUL in this study resulted in CWSI values that 
are less sensitive to mild levels of water stress compared to 
other studies. Despite this reduction in sensitivity, severely 
water-stressed plots of sugarbeet and wine grape resulted in 
CWSI values exceeding 0.9. Thus, estimates of TUL were ap-
propriate for the conditions of this study. 

Daily CWSI was calculated as the average of 15 min val-
ues determined between 13:00 and 16:00 MDT for sugarbeet 
and between 13:00 and 15:00 local time for wine grape. 
Daily CWSI values were well correlated with irrigation 
events and amounts. Daily CWSI decreased rapidly follow-
ing an irrigation event and increased after an irrigation event 
at higher rates for smaller irrigation amounts. Daily CWSI 
for sugarbeet increased as ASW decreased. A linear relation-
ship between daily CWSI and LWP for Malbec and Syrah 
wine grapes was significant (p < 0.001), with an R2 of 0.53. 
There was considerable variability in the relationship, pre-
venting the use of daily CWSI as a surrogate for LWP, but 
the significant correlation indicates that daily CWSI can be 
a useful tool for irrigation management of wine grape. Daily 
CWSI was also found to be well linked with SWP of Pinot 
noir grown in southwestern Oregon. 
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