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Abstract 

 Improving our understanding of antibiotic resistance in agroecosystems is important for the 

protection of human, animal, and ecological health. In south-central Idaho, antibiotic resistance genes 

(ARGs) [blaCTX-M-1, erm(B), sul1, tet(B), tet(M), and tet(X)] and a class 1 integron-integrase gene (intI1) 

were quantified in agricultural and non-agricultural soils (96 total sites) under various land use practices 

(cropland, forestland, inactive cropland, pastureland, rangeland, recreational, residential). We 

hypothesized that gene occurrence and abundance would be greater in intensively managed agricultural 

soils. The ARGs (except blaCTX-M-1) and intI1 gene were detected in many of the soils (15 to 58 out of 96 

samples), with sul1 and intI1 being detected the most frequently (60% of samples). All of the genes were 

detected more frequently in the cropland soils (46 sites) and at statistically greater relative abundances 

(per 16S rRNA gene) than in soils from the other land use categories. When the cropland gene data was 

separated by sites that had received manure (27 sites), it was revealed that the genes [except tet(B)] were 

found at statistically greater abundances (7- to 22-fold higher on average) than in soils that were not 

treated. The results from this study provide convincing evidence that manure use in Idaho cropland soils 

increases the expansion of antibiotic resistance-related determinants.  

Keywords: Agroecosystem; Antibiotic resistance gene; Class 1 integron; Cropland; Manure; Soil  

Introduction 

 Agriculture produces food, fiber, and fuel to satisfy the demands of an ever-growing world 

population. However, like many anthropogenic activities, there are a number of negative environmental 

impacts associated with agricultural production and its intensification (Tilman et al., 2002). Some of the 

most prominent issues include soil degradation, water and air pollution, deforestation, and climate 

change. Recently, attention has also been given to prophylactic and therapeutic uses of antibiotics in food-
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animal production and their potential contribution to the development of drug resistant bacteria in-vivo, 

during manure storage, and in soils receiving manure solids or wastewater as a fertilizer (Binh et al., 

2008, Negreanu et al., 2012, Chantziaras et al., 2014). The continued use of large quantities of antibiotics 

in animal production raises concerns about the release of these drugs and the increasing prevalence of 

antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. While use 

of antibiotic drugs can enrich ARB, the interplay between antibiotic drug use, ARB/ARGs, and land use 

practices in agroecosystems is poorly understood (Williams-Nguyen et al., 2016).  

 Samples analyzed from isolated environments have demonstrated that antibiotic resistance is a 

natural and ancient phenomenon that predates clinical antibiotic use (Miteva et al., 2004, D'Costa et al., 

2011, Bhullar et al., 2012). Antibiotic resistance genes occur in native soils without anthropogenic 

selection pressure (Allen et al., 2009), but evidence suggests that their abundance in agricultural soils has 

been increasing since the 1940s (Knapp et al., 2010). Although the environmental or anthropogenic 

causes have not been determined, the gene level increases occurred during the same period when 

industrial production of antibiotics was growing rapidly. Furthermore, agricultural intensification 

increased at the same time and antibiotics were used for growth promotion purposes, which ultimately 

made their way to agricultural fields via manure application (Davies & Davies, 2010). Manure application 

can transfer ARB and ARGs to soils, as well as antibiotic residues and other xenobiotic compounds, 

resulting in the expansion of antibiotic resistance reservoirs when compared to that of native soils (Heuer 

& Smalla, 2007, Cytryn, 2013, Amarakoon et al., 2016, McKinney et al., 2018).    

 The detection of ARGs in soils, manures, and agriculturally impacted environments is well 

documented in the scientific literature, but the risk of elevated ARG levels on public health is not well 

understood. Antibiotic resistance genes are genetic code used by ARB to make proteins to resist the 

effects of antibiotics, with ARGs often thought of as being comparable to “emerging contaminants” 

(Pruden et al., 2006, Dalkmann et al., 2012). Bacterial species that can resist the activity of one or more 

antibiotic compounds as a result of their inherent structural or functional characteristics are considered 

“intrinsically resistant”. These inherent properties predate the antibiotic era and are chromosomally 

encoded or occur because bacteria lack pathways or target site (Franklin et al., 2016). In contrast, 

“acquired resistance” occurs when bacteria horizontally obtain ARGs through conjugation (cell-to-cell 
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mediated), transformation (uptake of naked DNA), or transduction (phage mediated). Conjugation uses 

mobile genetic elements, such as transposons  plasmids, which all play a critical role in the development 

and dissemination of antibiotic resistance among clinically relevant organisms (Allen et al., 2010). In the 

case of transformation, only a small number of clinically relevant bacteria are known to be able to 

incorporate naked DNA to develop resistance (Munita & Arias, 2016), whereas transduction is not 

considered to contribute to gene exchange among distantly related bacteria (Dröge et al., 1999). 

Regardless of gene acquisition mechanism, there is little information available concerning the frequencies 

at which ARGs are transferred in agricultural environments (Durso & Cook, 2014).  

The first step of many ARG investigations generally involves the extraction of genomic DNA 

from environmental samples using commercially available kits, followed by quantitation of selected 

genes using a PCR-based approach (Pruden et al., 2012, Agga et al., 2015, Rieke et al., 2018). The ARGs 

detected in such studies are both intracellular and extracellular, as methods to distinguish between the two 

are not regularly used (Zhang et al., 2013). In addition, it is not known if the ARGs are associated with 

viable bacteria and being expressed or have the ability to cause resistance in recipient bacteria. Despite 

some of these known limitations, monitoring ARGs via a PCR-based approach can provide valuable 

information on the proliferation of antibiotic resistance in an ecosystem (Luby et al., 2016). An increase 

in ARG levels is a general indicator that ARB enrichment is occurring and/or selective agents (e.g., 

antibiotics, metals), ARB, and ARGs are being released into the environment. Although, it could also 

simply reflect changes in the bacterial community composition. The primary aim of this study was to 

determine the occurrence and abundance of selected ARGs [blaCTX-M-1, erm(B), sul1, tet(B), tet(M), and 

tet(X)] and a class 1 integron-integrase gene (intI1) in soils under various agricultural and non-

agricultural land use practices (i.e., cropland, inactive cropland, pastureland, rangeland, recreational, 

forest, residential) in south-central Idaho. Compared to non-agricultural lands, croplands are routinely 

exposed to manures, treated with synthetic fertilizers, planted with various crops, and subjected to 

irrigation and tillage practices. As a result, we hypothesized that the gene targets would be present at 

greater frequencies and relative abundances in intensively managed agricultural soils compared to soils 

under the other land uses.   
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Materials and Methods 

Description of Region and Sampling Sites  

South-central Idaho is an intensively managed region with a high percentage of the land in 

irrigated row crops and animal production. This region has as a semiarid climate and consists of hot dry 

summers and cool wet winters, with a mean annual temperature of 8.7°C and precipitation of 284 mm. 

Idaho is currently the fourth largest dairy state in terms of milk production, with a total of 602,000 

lactating cows (NAS, 2018). Approximately 71% of these dairy cattle are located in 6 counties within 

south-central Idaho. There are also about 93,000 beef cattle in this region, with stockers/cows often 

grazed on non-irrigated rangeland and fields after harvest and feeder cattle in feedlots. The manure solids 

(stacked and composted) and wastewater from the manure management systems, especially for dairy 

production, are applied to the surrounding cropland in the fall or spring. In addition to cattle manure, 

some crop fields also receive biosolids from municipal wastewater treatment or aquaculture facilities.  

We collected information regarding the crop/vegetation, irrigation, presence of animals, and 

organic fertilizer treatments at each sampling site. This information was provided to us by the land 

owners or farm supervisors and/or deduced by a visual inspection of the land when necessary. At some 

sites it was not possible to acquire information about current and past management practices, so at the 

minimum, each sampling site was categorized based on the land use and land cover classification system  

according to Anderson (1976)). The land use categories (followed by number of soil samples) included 

cropland (46), inactive cropland (6), pastureland (8), rangeland (17), recreational (13), forestland (4), and 

residential (2). Cropland is irrigated land where row or field crops are grown; inactive cropland is land 

that has been taken out of agricultural production; pastureland is land that is managed as pasture areas for 

livestock grazing; rangeland is land where the potential natural vegetation is predominantly grasses, 

grass-like plants, forbs, or shrubs, which may have been subjected to grazing activities; recreational land 

areas include city, county, and state parks which are open to a variety of recreational activities; 

forestlands are any lands covered by woody vegetation and support timber harvest and many kinds of 

outdoor recreation; and residential land areas support single-family residences in rural settings. 

Information about the sampling sites is located in supplementary Table S1. 
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Collection of Soil Samples 

Soil samples were obtained from 96 sites within 7 counties (i.e., Twin Falls, Jerome, Gooding, 

Lincoln, Blaine, Minidoka, and Cassia) between 4 Aug and 30 Nov, 2016. Using an ethanol-disinfected 

auger, soil samples were collected from the top 15 cm after removing as much of the organic residue as 

possible. The samples were placed in clean sealable plastic bags and immediately stored in a cooler with 

ice packs during transport to the laboratory. Upon arrival at the laboratory, the soils were processed using 

a 2-mm sieve, then returned to the plastic bag for storage at -75C until  analyzed. 

Soil Chemical Analysis 

The moisture content of each soil was determined by oven drying overnight at 105C. Air-dried 

and sieved soil (2 mm) were analyzed for pH and electrical conductivity (EC) using a 1:1 soil:deionized 

water suspension. All soils were pulverized using a mortar and pestle, then a 50-mg sample was analyzed 

for total carbon and nitrogen in a Flash EA1112 NC Analyzer (CE Elantech, Inc., Lakewood, NJ, USA). 

The pulverized soil was analyzed for inorganic carbon using a modified pressure-calcimeter method 

(Sherrod et al., 2002). Soil organic carbon was determined as the difference between total and inorganic 

carbon. The soil properties are located in supplementary Table S1.  

Quantitation of Genes  

Total DNA was extracted from approximately 500 mg of soil (wet wt.) using the FastDNA Spin 

Kit for soil and the FastPrep Instrument (MP Biomedicals, Santa Ana, CA) following the manufacturer’s 

protocol. The DNA extracts were stored in DNase/pyrogen-free water at -20C until analyzed by 

quantitative real-time PCR (qPCR) on a iQ5 Real-Time PCR Detection System (Bio-Rad, Hercules, CA). 

Each individual reaction consisted of 12.5 L of 2× SsoAdvanced™ Universal Probes Supermix (Bio-

Rad), 250 nM of forward and reverse primers and probes, 2 L of DNA template (10-fold diluted in 

molecular biology grade water to minimize PCR inhibition), and sterile DNase/pyrogen free water to 

create a final volume of 25 L. The gene targets were 16S rRNA, blaCTX-M-1, erm(B), intI1, sul1, tet(B), 

tet(M), and tet(X). Primers, probes, annealing temperatures, amplicon lengths, and sequences can be 

found in Dungan et al. (2018)). The thermocycler conditions consisted of one cycle at 95°C for 3 min, 40 

cycles at 95°C for 15 s, and annealing temperature for 30 s. The qPCR runs included a standard curve 
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covering seven orders of magnitude, and each sample was analyzed in duplicate. Standards were created 

using gBlocks Gene Fragments (Integrated DNA Technologies, Coralville, Iowa, USA).  

Statistical Analysis 

 To determine the relationship between the ARG and intI1 relative abundances in soil, Pearson 

correlation coefficients (r) were calculated using the CORR procedure in SAS (version 9.4, SAS Institute 

Inc., Cary, NC). Relative gene abundance data (gene copies/16S rRNA gene copies) was log transformed 

before analysis to meet assumptions of normality and homogeneity of variance. Highly correlated values 

were defined as r ≥ 0.70. To compare the relative abundances of ARGs and intI1 between cropland and 

all other soils and within cropland soils (manure versus no manure), the Wilcoxon rank-sum test was 

performed using the NPAR1WAY procedure in SAS. All statements of statistical significance were 

declared at P < 0.05. The hierarchical cluster analysis was performed to compare relative gene 

abundances among individual sites using the hclust function in R (version 3.4.3, R Core Team) with 

complete linkage and square Euclidean distance.  

Results and Discussion  

The absolute abundance of ARGs and intI1 and 16S rRNA genes in the soils is presented in Fig. 

1. All of the ARGs (except blaCTX-M-1) and intI1 were detected in some of the soils (15 to 60 detections out 

of 96 samples), with sul1 and intI1 being detected the most frequently (60% of samples), while erm(B), 

tet(B), tet(M), and tet(X) were detected less frequently (16 to 45%). Regardless of land use category, the 

median number of gene copies/g soil (dry wt.) were: erm(B), 1.1 × 10
5
; sul1, 1.6 × 10

5
; tet(B), 5.2 × 10

4
; 

tet(M), 1.4 × 10
5
; tet(X), 7.5 × 10

4
; and intI1, 8.4 × 10

4
. The 16S rRNA gene was detected in all soils as 

expected, at a median level of 9.2 × 10
9
 gene copies/g soil. The ARGs targeted in this study were chosen 

because they include resistance to antibiotics that are considered medically important (WHO, 2016), 

utilize different resistance mechanisms, and cover a wide range of bacterial hosts (van Hoek et al., 2011, 

Roberts & Schwarz, 2016). These genes have been targeted in two previous studies of ours (Dungan et 

al., 2018, McKinney et al., 2018) and in many other soil-focused studies (Fahrenfeld et al., 2014, Marti et 

al., 2014, Kyselková et al., 2015, Nõlvak et al., 2016, Sandberg & LaPara, 2016). Despite the fact that 

community DNA in the present study (and above mentioned studies) was obtained from both live/dead 
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soil bacteria and extracellular forms, ARGs and the intI1 gene are considered useful indicators to evaluate 

the antibiotic resistance status in environmental settings (Berendonk et al., 2015).  

The blaCTX-M genes encode resistance to -lactam antibiotics, with CTX-M enzymes being the 

most prevalent extended-spectrum -lactamases worldwide (Canton & Coque, 2006). Because CTX-M-1 

group enzymes are not currently endemic in the U.S., the absence of blaCTX-M-1 in all soil samples was not 

unexpected. The erm(B) gene confers resistance to macrolide–lincosamide–streptogramin B (MLSB) 

antibiotics and is found in a wide host range (many genera of aerobic and anaerobic Gram-positive and 

Gram-negative bacteria) compared to numerous other MLSB resistance genes and in most ecosystems that 

have been examined (Roberts, 2008). The tetracycline resistance genes were chosen to cover the three 

known mechanisms of resistance including efflux [tet(B)], ribosomal protection [tet(M)], and enzymatic 

[tet(X)] (Roberts, 2005). Sulfonamide resistance genes (i.e., sul1, sul2, and sul3) are often found on 

transferable plasmids, with sul1 and sul2 being the main determinants of resistance in Gram-negative 

enteric bacteria of clinical origins (Skold, 2000, Perreten & Boerlin, 2003, Binh et al., 2008). sul1 was 

targeted for investigation since it is typically associated with the class 1 integrons (Antunes et al., 2005, 

Vinué et al., 2010). Even though intI1 is not an ARG, it can be used as a proxy for ARG contamination 

because it is linked to antibiotic, disinfectant, and metal resistance genes, resides in a diverse number of 

commensal and pathogenic bacteria, is often located on mobile genetic elements, and many common 

forms are xenogenetic (i.e., assembled relatively recently under selection pressures brought upon by 

human activities) (Gillings et al., 2015). 

Relative gene abundances in the agricultural and non-agricultural soils are presented in a heat 

map (Fig. 2). The normalization of ARGs to the 16S rRNA gene provides an indicator of the proportion 

of bacteria carrying ARGs, while also correcting for minor variations in sample processing (McKinney et 

al., 2010). The heat map and Table 1 both show cropland soils having the highest number of gene 

occurrences for ARGs and intI1, as well as some of the greatest abundances. Interestingly, erm(B), tet(B), 

and tet(X) were primarily detected in the cropland soils, except for one detection of erm(B) in soil from a 

rangeland (Range7) site and three occurrences of tet(B) in soil from recreational (Rec8 and Rec9) and 

rangeland (Range8) sites. Across all land uses, sul1, tet(M), and intI1 were the most frequently detected 

with 57, 43, and 58 occurrences out of 96 samples, respectively (Table 1). The sites with the highest 
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relative abundances (log10 gene copies/16S rRNA gene copies) were all found in cropland soils: erm(B), -

3.4 (Crop16); sul1, -2.5 (Crop4); tet(B), -2.3 (Crop16); tet(M), -3.4 (Crop33); tet(X), -2.8 (Crop38); and 

intI1, -2.5 (Crop36). There was a tendency for the cropland sites to cluster in the dendrogram (Fig. 3) 

because 38 of 50 sites with the greatest gene abundances were from croplands. In addition, all gene 

targets were determined to be in significantly greater abundance in the cropland soils when compared to 

soils from the other land use categories (P ≤ 0.006; data not presented). Pruden et al. (2006) found that 

sulfonamide and tetracycline ARG levels were greater in environments directly impacted by 

urban/agricultural activity than in lesser-impacted natural environments. 

The above mentioned data suggests that a particular management practice (e.g., tillage, irrigation, 

fertilization) in croplands could be enriching ARB and/or adding these genes/ARB to the soil. When the 

cropland gene data was separated by sites that had received dairy manure, dairy wastewater, and/or 

biosolids at some point in their recent history, it was revealed that all genes, except tet(B), were found at 

statistically greater abundances (7- to 22-fold higher on average) than in soils that were not treated (Fig. 

4). To the best of our knowledge, 27 of 46 cropland sites had received organic fertilizer applications the 

same year or up to several years before we collected the soil samples (Table S1). Since the common 

denominator in cropland soils of this region is tillage, irrigation, and use of inorganic fertilizers, manure 

application appears to be the predominant factor contributing to the increased abundance of ARGs and 

intI1. In contrast, Nõlvak et al. (2016) discovered that inorganic nitrogen fertilizer usage alone enhanced 

the relative abundance of tet(A) in an agricultural grassland soil, most likely by stimulating indigenous 

bacterial populations. In our studies (Dungan et al., 2017; McKinney et al., 2018), use of inorganic 

fertilizers did not result in ARG increases above those in no-fertilizer control plots, which is supported by 

results from Lin et al. (2016) and Udikovic-Kolic et al. (2014).  

Many studies to date have demonstrated that the use of animal manures in soil enlarges the 

reservoir of clinically relevant ARGs (Heuer et al., 2011, Ruuskanen et al., 2016), at least for a transient 

period after application (Marti et al., 2014, Liu et al., 2017). Specific to the region of the present study 

(i.e., south-central Idaho), Dungan et al. (2018)) found that monthly applications of dairy wastewater 

(straight or diluted to 50%) to a silt loam soil increased the abundance of intI1, erm(B), sul1, and tet(M). 

Only sul1 was detected in the soil before treatment, while intI1, erm(B) and tet(M) were below detection 
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limits. In the same soil type, annual applications of dairy manure for fertilizer purposes significantly 

increased the abundance of intI1, sul1, tet(W), and tet(X) (McKinney et al., 2018). When animal manure 

and wastewater are land applied, ARB and other constituents (e.g., antibiotics, nutrients, metals, 

disinfectants) are introduced into the soil (Schauss et al., 2009, Ji et al., 2012, Dungan et al., 2018). 

Furthermore, the accumulation of ARGs in manured soil depends on the input of resistant bacteria from 

the manure, their horizontal gene transfer to soil-adapted bacteria, and the selective pressure of antibiotic 

residues and other chemical stressors (Binh et al., 2008, Marti et al., 2013, Udikovic-Kolic et al., 2014, 

Xie et al., 2018). While manure treatment does indeed influence the occurrence and abundance of ARGs 

in soil, it is important to note that ARGs were detected at similar levels in non-agricultural soils of this 

study (i.e., forest, recreational), which supports findings that they are present in background (native) 

environments (Durso et al., 2016, Rothrock et al., 2016). This information will be useful to those who are 

trying to understand the spread of antibiotic resistance in agroecosystems, since it is critical to include 

background sites that lack anthropogenic disturbance for comparative purposes. Normalization of study 

data to background data can  help more accurately determine the impact of agricultural management 

practices on antibiotic resistance within an agroecosystem (Rothrock et al., 2016).    

The correlation analysis (Table 2) shows that the relative abundance of sul1 and tet(M) were 

highly correlated with intI1 (r = 0.76–0.77, P < 0.0001). A number of studies have found positive 

correlations between the abundance of the intI1 and sul1 (and other ARGs) in soils, which is expected 

since they are typical components of  class 1 integrons (Gillings et al., 2015). In soil amended with cattle 

slurry or cattle slurry digestate, relative abundances between intI1 and sul1 were highly correlated (r = 

0.88–0.98, P < 0.001) (Nõlvak et al., 2016). Lin et al. (2016)) also found a strong correlation between 

intI1 and sul1 (r = 0.97, P < 0.01), as well as with tet(A), tet(G), tet(W) and sul2 (r = 0.71–0.97, P < 

0.01), in a paddy-upland rotational soil. Peng et al. (2017)) found that intI1 was highly correlated with 

sul1 (r = 0.99, P < 0.01) and other ARGs [tet(G), tetB(P), tet(O), tet(W), sul2, erm(B), and erm(F)] (r = 

0.74–0.98, P < 0.01) in soils under a wheat-soybean rotation. In these latter two studies, the correlations 

were largely driven by the application of composted chicken manure and swine manure, respectively. 

Other highly correlated genes in the present study were erm(B) and tet(X) [r = 0.78, P < 0.003] and tet(B) 

and tet(X) [r = 0.74; P < 0.024] (Table 2). There were also significant correlations between sul1 and 
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tet(M) [r = 0.58, P < 0.0004) and tet(M) and tet(X) [r = 0.49, P < 0.033], but the r-values were < 0.70 and 

not considered to be highly correlated. In addition, correlations between the gene targets and soil 

properties (i.e., total C and N, organic C, pH, and electrical conductivity) in the present study were tested 

on log transformed data, which were found to be neither highly correlated and significant (data not 

shown). In a study of archived soils by Knapp et al. (2011), some significant correlations were found 

between ARG levels and geochemical properties, such as pH and heavy metals.    

Conclusions 

Regions under intensive agricultural production are suspected of contributing to the growing 

threat of antibiotic resistance, thus understanding the development and spread of antibiotic resistance 

determinants in agroecosystems is important in protecting human, animal, and ecological health. In this 

study, cropland soils in south-central Idaho were found to contain a greater frequency and abundance of 

ARGs and intI1, with manure application being the primary reason. Because ARB and ARGs are 

entrained in manure-derived organic fertilizers, their addition to soils simply increases the total bacterial 

and gene load. Animal manures and biosolids also contain antibiotics, metals and disinfectants, which 

could also be influencing ARG levels in the cropland soils. While the occurrence and abundance of ARGs 

in cropland soils was statistically greater than that in soils from the other land use categories, this does not 

necessarily mean that an increased rate of horizontal gene transfer from manure-borne to soil bacteria 

occurred. However, considering the potential health risks caused by ARB, measures to reduce 

ARB/ARGs and chemical residues in manures prior to their land application should be investigated. In 

addition to manure application, efforts should also be devoted to determining how other soil/crop 

management practices, as well as the role of the rhizosphere, influence the abundance and spread of 

ARGs. Lastly, the results from the present study will be useful to help guide researchers in their selection 

of background sites during investigations of antibiotic resistance in agroecosystems, as well as those 

seeking to conduct antibiotic resistance risk assessments. 
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Figure Captions 

 

Figure 1. The absolute abundance [gene copies/g soil (dry wt.)] of antibiotic resistance [erm(B), sul1, 

tet(B), tet(M) and tet(X)], class 1 integron-integrase (intI1), and 16S rRNA genes in agroecosystem soils 

from south-central Idaho. The horizontal lines in the box plots, from top to bottom including the whisker 

caps, represent the 10
th
, 25

th
, 50

th
, 75

th
, and 90

th
 percentiles, while the black circles are the 5

th
 and 95

th
 

percentiles. The values inside the box plots are the number of positive gene detections out of a maximum 

sample size of 96.  
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Figure 2. Heat map illustrating the relative abundance of antibiotic resistance [erm(B), sul1, tet(B), tet(M) 

and tet(X)] and class 1 integron-integrase (intI1) genes in the soils by land use category. The color scale 

at the bottom indicates the gene abundance from no detection (white) to ≥ 10
-4
 gene copies/16S rRNA 

gene copies (dark blue). †Indicates cropland soils that have a history of receiving dairy manure, dairy 

wastewater, or biosolids. Detailed information about the sampling sites can be found in the Table S1 

(Supporting Information). 
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Figure 3. Dendrogram showing clustering for 77 land use sampling sites compared based on the relative 

abundance (gene copies/16S rRNA genes) of antibiotic resistance [erm(B), sul1, tet(B), tet(M) and tet(X)] 

and class 1 integron-integrase (intI1) genes. The hierarchical cluster analysis was performed using the 

“complete” agglomeration method and the square Euclidean distance for distance measures. The 

descriptor for each line is a code for each land use sampling site: Crop = cropland; For = forest; InCrop = 

inactive cropland; Past = pastureland; Range = rangeland; Rec = recreational; and Res = residential. 

Nineteen of the original 96 sampling sites were not included in the analysis because genes were not 

detected at these sites.   
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Figure 4. The average relative abundance (gene copies/16S rRNA genes) of antibiotic resistance and intI1 

genes in cropland soils known to be treated with manure, wastewater, and/or biosolids (Manure) and 

cropland soils that have not been treated (No Manure). Error bars indicate 95% confidence intervals. 

Columns with different letters (a or b) indicate a significant difference at the 0.05 probability level. 

Detailed information about the sample sites can be found in the Table S1 (Supporting Information). 
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Table 1. A summary of ARG and intI1 gene occurrences and relative 

abundances (log10 gene copies/16S rRNA gene copies) in soils from 

croplands and all other land uses.

Gene

Cropland 

(n = 46) Max Mean

All other 

land uses  

(n = 50) Max Mean

erm (B) 20 -3.4 -4.7 1 -5.3 -7.0

sul1 35 -2.5 -3.7 22 -2.5 -4.0

tet (B) 12 -2.3 -4.0 3 -4.8 -6.4

tet (M) 35 -3.1 -4.2 8 -4.1 -5.5

tet (X) 19 -2.8 -4.2 0

intI1 39 -2.5 -3.8 19 -4.6 -5.8
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Table 2. Pearson correlation analysis of relative ARG and intI1  gene

abundances in the agroecosystem soils from all land uses.

sul1 tet (B) tet (M) tet (X) intI1

0.137 0.756 0.187 0.783 -0.188
0.577 0.082 0.431 0.003 0.416

19 6 20 12 21

0.300 0.575 0.216 0.761

0.400 0.0004 0.390 <0.0001

10 34 18 48

0.122 0.735 -0.079

0.705 0.024 0.799

12 9 13

0.491 0.758

0.033 <0.0001

19 36

0.038

0.877

19
In each cell, the upper value is the Pearson correlation coefficient (r ), the

middle value is the P -value, and the lower value is the number of 

observations (n). Bold values indicate statistical significance (P  < 0.05).
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