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Dominant  and  co-dominant  molecular  markers  are  routinely  used  in plant  genetic  research.  In  the  present
study  we  assessed  the success-rate  of three  marker-systems  for estimating  genotypic  diversity,  cluster-
ing varieties  into  populations,  and assigning  a single  variety  into  the  expected  population.  A  set of  54
diploid  sugar  beet  (Beta vulgaris  L. ssp.  vulgaris)  hybrid  varieties  from  five  seed  companies  was  genotyped
with  702  Diversity  Array-Technology  (DArT),  34  Single  Nucleotide  Polymorphisms  (SNP),  and  30 Sim-
ple Sequence  Repeats  (SSR)  markers.  Analysis  of  the population  structure  revealed  three  well-defined
populations  and  clustering  of  varieties  that  generally  correlates  with  their  seed  company  origin. Two
populations  each  contained  varieties  from  two  different  seed  companies  indicating  genetic  similarity  of
this  material.  The  third  population  was  comprised  only  of  varieties  from  a single  seed  company.  Analysis
of  the  SSR  and  SNP  datasets  indicates  that  some  of  the  hybrid  varieties  likely  have  a  common  (or very
closely  related)  parent.

Comparison  of the  three  marker-systems  revealed  substantial  differences  in  the  number  of  loci
needed  for  analyses.  Varietal  clustering  required  approximately  1.8–2 × more  SSR,  3–4.5  ×  more  SNP,
and  4.8  × more DArT  markers  than  were  required  for detection  of genotypic  diversity.  When  marker-

systems  were  compared  across  different  types  of analyses  per  locus  success-rate  was  the  highest  for  the
SSR and  the  lowest  for the  DArT  markers.  Generally,  about  1.4–3 × more  SNPs,  and  4.9–13.3  ×  more  DArTs
then  SSRs  were  needed  to  achieve  the  100%  success-rate.  However,  using  only  DArT  markers  with  a  high
level of  polymorphism  decreased  the  number  of  DArT  loci  needed  for analyses  by 38–61%.  Results  from
the  present  work  provide  a premise  to selecting  the type(s)  and  number  of  markers  that  are  needed  for
genetic diversity  analysis  of  sugar  beet  hybrid  varieties.
. Introduction

Detection of population structure, assignment of an individ-
al into a population, and assessment of genetic variation in
oth domesticated and wild species are frequently used in plant
reeding, germplasm classification in gene banks, investigation

f evolutionary processes, and other research areas [1].  There are
everal types of molecular markers that are commonly used in
lant genetic analyses such as assessment of population structure,

Abbreviations: AUC, area under the curve; DArT, diversity array technology;
ArT-HP, Diversity Array Technology markers with Highest Polymorphism; DR, data

esolution statistics; EST, Expressed Sequence Tag; PCR, Polymerase Chain Reaction;
IC, polymorphism information content; SNP, Single Nucleotide Polymorphism; SSR,
imple Sequence Repeats (microsatellites).
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linkage map  construction, mapping alleles for desirable traits,
marker-assisted selection, and fingerprinting of varieties. These
markers are classified as either co-dominant or dominant, depend-
ing on their ability to distinguish allelic status of a heterozygote
from a dominant homozygote. Results of modeling show that
fewer co-dominant than dominant markers are needed to attain
the same estimate of genetic diversity [2] and clustering of
accessions [3].  To evaluate empirically the success-rate of different
molecular marker-systems in detecting genetic diversity, resolving
population structure, and assigning individuals into populations,
we have examined diploid hybrid varieties from five sugar beet
breeding companies that were genotyped with three molecular
marker-systems namely; SSR, SNP, and DArT.

SSR (microsatellites) are short tandem repeats in DNA that

are present in genomes of all analyzed eukaryotic organisms
[4]. Because of their high reproducibility, multiallelism, and co-
dominant inheritance, SSRs are frequently used in plant genetics
[5].

dx.doi.org/10.1016/j.plantsci.2011.12.009
http://www.sciencedirect.com/science/journal/01689452
http://www.elsevier.com/locate/plantsci
mailto:ivan.simko@ars.usda.gov
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[12]. For all marker-systems we used the simple matching distance
averaged over all markers with at least two  non-missing obser-
vations. DR values can be in the range from 0 to 1, higher values
I. Simko et al. / Plant

SNP is a single-point mutation of DNA in which one nucleotide
n a particular locus is substituted with another one. SNPs are
ften used in genome-wide association studies as they are highly
bundant in genomes, amenable to high-throughput screening, co-
ominant, and usually biallelic.

DArT is a genotyping system based on microarraying. The
ethod detects several hundred of polymorphic fragments (DArT
arkers) in the genome in a single analysis [6].  Unlike SSR- and

NP-based markers, DArT are dominant markers scored as either
resent or absent, thus providing less genetic information for a
iven locus. Hurtado et al. [7] observed that 251 DArTs and 36
SRs (approximately 7:1 ratio) generated broadly similar cluster-
ng patterns in 436 varieties of cassava; however, greater genetic
ifferentiation was revealed with SSR markers.

The objectives of the present research were: (1) to compare
enotypic diversity assessed by DArT, SSR, and SNP marker-
ystems; (2) to evaluate the success-rate of these marker-systems
or clustering varieties into populations and (3) for assignment of

 single variety into a population. This kind of empirical analysis
hould reveal the relative success-rate of different marker-systems
n resolving population structure of cultivated sugar beet and for
ngerprinting of varieties. New information about performance of
ArT markers is particularly vital, because there are limited studies

hat compare this type of molecular marker with other marker-
ystems.

. Materials and methods

.1. Plant material

Seeds of 54 diploid hybrid varieties (Supplementary file 1) were
btained from five commercial sugar beet seed companies: 8 from
merican Crystal Hybrid Seeds Inc. (Eden Prairie, MN, USA), 15

rom Betaseed Inc. (Shakopee, MN,  USA), 10 from Holly Hybrids
Sheridan, WY,  USA), 18 from Hilleshög (Longmont, CO, USA), and

 from SeedEx (Fargo, ND, USA). Plants from all varieties were
rown in a greenhouse and total genomic DNA was  extracted from
reeze-dried leaves of a randomly selected single plant using Qia-
en DNeasy Kit (QIAGEN, Valencia, CA, USA). This single plant was
onsidered a typical representative of the respective variety, pro-
ided that the varieties are hybrids developed by crossing two
ear homozygous lines. In reality, sugar beet hybrid varieties are
ot completely homozygous and contain a degree of heterozygos-

ty. Genotyping with the three marker-systems was  carried out on
liquots of DNA originating from the same extraction.

.2. Molecular markers

.2.1. SSR markers
Thirty SSR markers used for genotyping comprised 17 unlinked

enomic SSRs with known map  position [8] and 13 EST-SSRs
eveloped from the sugar beet GenBank EST database at NCBI
http://www.ncbi.nlm.nih.gov/nucest?term=(sugar%20beet)%20
ND%20“Beta%20vulgaris”[porgn: txid161934]) (Supplementary
les 2 and 3). PCR was performed with M-13 tailed forward primers
hat were labeled with FAM, PET, or NED dyes (Applied Biosystems,
oster City, CA, USA). The PCR reaction mixture (20 �l) consisted
f approximately 20 ng template DNA, 1× PCR buffer (Applied
iosystems, Foster City, CA, USA), 2.5 mM MgCl2, 0.2 mM of each
NTP, 0.2 �M of forward labeled primer, 0.4 �M of M-13, 0.2 �M of
everse primer, and 0.5 U of AmpliTaq Gold (Applied Biosystems,

oster City, CA, USA). The thermocycling conditions included an
nitial denaturing period of 5 min  at 95 ◦C, followed by 35 cycles
f 95 ◦C for 50 s, annealing at 58 ◦C or 60 ◦C for 50 s, extension at
2 ◦C for 90 s, and a final extension period for 10 min  at 72 ◦C. PCR
ce 184 (2012) 54– 62 55

products were electrophoresed using ABI 3100 Genetic Analyzer
following the manufacturer’s protocol (Applied Biosystems, Foster
City, CA, USA).

2.2.2. SNP markers
Thirty-four SNP markers (Supplementary file 2) with known

genetic map  positions [9] were used for genotyping, which was
performed by TraitGenetics GmbH (Gatersleben, Germany). Geno-
typing was  carried out using the 48plex SNPlex system (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer’s
recommendations. SNPlex genotyping was  based on an oligonu-
cleotide ligation assay to differentiate between the two SNP alleles,
followed by PCR using universal primers. PCR products were then
hybridized to DNA probes carrying fluorescent dyes. Labeled frag-
ments were detected with ABI 3730XL capillary sequencer (Applied
Biosystems, Foster City, CA, USA).

2.2.3. DArT markers
Genotyping with DArT markers was  performed by Diversity

Array Technology Pty, Ltd. (Yarralumla, Australia). Marker devel-
opment was  based on the protocol of Jaccoud et al. [10]. The
genome complexity reduction was carried out through digestion
of total genomic DNA with the PstI/BstNII combination of restric-
tion enzymes, ligation of enzyme adaptors, and amplification of
adaptor-ligated fragments [6].  Four libraries were constructed
using the representations produced by PstI/BstNII digestion. Seven
hundred and two  DArT markers that showed polymorphism on the
set of 54 varieties were scored as present or absent (1/0) using
bimodal distribution of relative signal intensity.

2.2.4. DArT-HP
Considering that SNP markers are used by TraitGenetics for com-

mercial genotyping of sugar beet accessions, it is likely that these
markers have been selected for high level of polymorphism dur-
ing their development. Mapped genomic SSRs [8] may also have
been subjected to a selection procedure leading to a higher marker
polymorphism. Therefore, for comparison purposes, we performed
similar selection on the bulk of DArT markers. One hundred markers
with the highest level of polymorphism (DArT-HP) were selected
from the total number (702) of scored DArT markers. Polymor-
phism of markers was  estimated using polymorphism information
content (PIC) formula:

PIC = 1 −
n∑

i=1

pi
2

where n is the number of alleles and pi is the frequency of the ith
allele of the evaluated locus [11]. DArT-HP markers were used sep-
arately in all analyses to observe an effect of high polymorphism
on performance of dominant markers.

2.3. Data analysis

2.3.1. Consistency of molecular marker datasets
Data resolution (DR) statistics were used to evaluate quality of

marker datasets, particularly the internal consistency of the data
indicating higher internal consistency of the data. All data analy-
ses were performed with tailor-made software programs written
in visual basic for applications in a MS-Excel environment [12]. The
number of replications was set to 10,000.
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.3.2. Estimating the optimal number of populations and
ssigning varieties into populations – analyses with the complete
et of markers

To detect the population structure and to assign individuals
nto populations, 766 markers from the three marker-systems (30
SRs, 34 SNPs, and 702 DArTs) were combined into a single set.
wo computer programs were employed to carry out independent
nalyses of population structure: STRUCTURE 2.3 [13,14] and Gen-
Dive v.2.0b20 [15]. For analysis with STRUCTURE recessive alleles
scored as 0) were indicated for DArT markers [13] as described
n the documentation for STRUCTURE software, version 2.3. Five
uns of STRUCTURE were carried out by setting the number of pop-
lations (K) from 1 to 10. For each run, the number of iterations
nd burn-in period iterations were both set to 100,000. The opti-
al  number of populations was estimated using the ad hoc statistic

�K), which is based on the rate of change in the log probability of
ata between successive K values [16]. All analyses were performed
ith the model that assumes admixture. GenoDive was used to
erform clustering analyses using k-means approach. The cluster-

ng was carried out using a matrix of Euclidian distances between
arieties, based on the allele frequencies. Analyses were run for 1
o 10 clusters (K) and simulated annealing with 100,000 steps. The
ptimal number of clusters (populations) was determined using
seudo-F statistics [15,17]. Both STRUCTURE and GenoDive identi-
ed the same optimal number of populations (K) with the identical
ssignment of individuals into populations. The results obtained
ith 766 markers were assumed to reveal the true (expected) pop-
lation structure and all analyses with a subset of these markers
ere compared to it.

.3.3. Estimating the optimal number of populations and
ssigning varieties into populations – analyses with a subset of
arkers

The subsequent analyses of population assignment, clustering of
arieties, and population structure were carried out with a subset of
, 10, 15, 20, 25, 30, 34, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450,
00, 550, 600, 650, and 702 randomly sampled or total number of
ArT markers. Sampling of loci was the same for all marker-systems
ith the exception that the maximum number of analyzed loci was

estricted to 100 for DArT-HP, 34 for SNP, and 30 for SSR due to
imited number of available markers. In all analyses the expected
ssignment of varieties into populations was based on the STRUC-
URE and k-means (GenoDive) clustering results with 766 markers
escribed in Section 2.3.2. In a statistical phrasing, assigning an

ndividual to some known clusters is a supervised clustering prob-
em [3,18],  while assigning individuals into clusters that are defined

 posteriori is an unsupervised clustering problem [18,19].  To mea-
ure the similarity between the expected and estimated population
ssignment under supervised clustering we used index:

 = a

n

here a is the number of varieties placed into the correct popu-
ations and n is the total number of varieties. Because labeling of
opulations in STRUCTURE and GenoDive is arbitrary, we computed

 for each of the K! possible permutations of the population labels
20] and recorded the maximum Smax across permutations. The pro-
ortion of varieties correctly placed into the expected populations
Smax) was expressed as a percentage (Smax × 100) and is referred to
s ‘success-rate’ throughout the text. All analyses were carried out
en times and mean values were calculated for each combination
f marker-system and the number of loci.
.3.4. Population structure
Analysis of population structure was performed with STRUC-

URE 2.3 software [13,14] as described in Sections 2.3.2 and 2.3.3.
ce 184 (2012) 54– 62

The number of populations was set to be equal to the expected
number of populations determined previously with 766 markers.
All analyses were performed with the model that assumes admix-
ture. Assignment of varieties into populations was based on a
highest membership probability criterion (q value) calculated by
STRUCTURE. This analysis is called ‘structure’ throughout the text.

2.3.5. Clustering of varieties
K-means clustering of varieties was  carried out with GenoDive

v.2.0b20 [15] as described in Sections 2.3.2 and 2.3.3; however,
analyses were performed only for the expected number of clusters
previously determined with 766 markers. This analysis is called
‘clustering’ throughout the text.

2.3.6. Population assignment
Population assignment was performed with GenoDive v.2.0b20

[15]. This analysis assigns an individual accession into a population
by calculating the likelihood that the variety’s genotype is found in
the population [21]. To avoid bias of assignment allele frequencies
in each population were calculated without the targeted individual.
Frequencies of alleles that were equal to zero were replaced with
the frequency of 0.005 as recommended in the documentation for
GenoDive. This analysis is called throughout the text as ‘assignment’.

2.3.7. Genotypic diversity
The software MultiLocus ver. 1.3b [22] was  used to estimate a

number of different genotypes that can be identified in a set of 54
varieties with a step-wise increasing number of marker-loci. This
analysis shows if scoring more loci is likely to increase the number
of identified genotypes, or whether one has reached a plateau. Loci
were sampled at random from 1 to m − 1, where m is the total num-
ber of marker-loci for the particular marker-system. One thousand
samplings were performed for each combination of marker-system
and loci number. The number of different genotypes that were iden-
tified in the analysis was  converted into the percent scale relative
to the total number of varieties. For simplicity and consistency with
other analyses, the percent of identified genotypes is also referred
to as success-rate of analysis. All analyses with MultiLocus were
performed ten times and mean values were calculated. This analysis
is called ‘genotyping’ throughout the text.

2.3.8. Combining success-rates and statistical analyses
Success-rates of structure, clustering,  assignment,  and genotyping

were calculated for several subsets of randomly sampled markers.
To combine success-rates from multiple subsets into a single overall
score, we  calculated area under the curve (AUC) through a simple
midpoint (trapezoidal) rule:

AUC =
n−1∑
i=1

ai + ai+1

2
× (mi+1 − mi)

where ai is a success-rate at the ith subset, mi is the number of
markers at the ith subset, and n is the total number of subsets.
When two  analyses are compared, a higher AUC value indicates a
higher success-rate across n subsets of markers. One-way ANOVA
(analysis of variance), two-way ANOVA, and Tukey–Kramer HSD
for significance of differences between AUCs were calculated with
JMP  6.0.3 (SAS Institute, Cary, NC, USA).
2.3.9. Estimating the number of marker-loci needed to achieve
100% success-rate

Not all marker-systems reached 100% success-rate when avail-
able loci were used for analyses. To estimate the number of
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Fig. 1. Distribution of polymorphism information content (PIC) values for 30 SSR,
34  SNP, and 702 DArT markers used for genotyping 54 varieties of sugar beet. The

both STRUCTURE and GenoDive programs grouped varieties into
the identical populations. The first population comprises 23 vari-
eties from two breeding companies: 15 varieties from Betaseed and

Fig. 2. Data resolution (DR) curve for the SSR (closed circle), SNP (open circle), DArT
I. Simko et al. / Plant

arker-loci that would be needed to achieve 100% success-rate,
e optimized parameters for the

 = a ×
[

1 −
(

1 +
(

x

b

)c
)−d

]

unction that approximates success-rate curves. In this formula x
s the number of marker-loci, y is the success-rate, and a, b, c, and

 are parameters that need to be optimized to achieve the best fit
f the curve to the series of observed datapoints. Optimization of
arameters was carried out with the program pro Fit 6.1.16 (Quan-
umSoft, Uetikon am See, Switzerland). The estimated number of
oci was rounded to the nearest whole number.

.3.10. Testing the possibility of a common parent
To explore the possibility of some hybrids being half-sibs, a

hance of having a common parent was estimated for all pairs of
arieties. This estimate was based on the assumption that any two
arieties may  have a common parent only if they have at least a sin-
le allele in common at all loci. All varieties were compared with
ach other and for every pair of varieties the number of marker-loci
upporting the assumption of a common parent was  counted. This
alue was divided by the total number of marker-loci comparisons
etween the two varieties, resulting in a frequency of support. The
requencies of support were calculated separately from the SSR and
NP datasets and multiplied, yielding a combined score:

S = CSSR

NSSR
× CSNP

NSNP

here FS is the frequency of support for a pair of varieties; CSSR and
SNP is the number of SSR and SNP marker-loci in which the two
arieties have at least one allele in common; and NSSR and NSNP is
he total number of SSR and SNP marker-loci comparisons between
he two varieties. To account for possible scoring errors, the cut-off
or the frequency of support was chosen at 0.92, which corresponds
o two marker-loci (either both SNP or both SSR, or one of each) not
upporting the possibility of a common parent.

. Results

.1. Marker polymorphism and data resolution

Seven hundred and sixty-six polymorphic markers were used to
enotype 54 diploid sugar beet varieties from five commercial seed
ompanies. The total number of alleles per SSR locus ranged from

 to 9, with the average of 4.3. All SNP loci showed biallelic status.
hirty SSR markers have the mean PIC of 0.59, 34 SNP markers have
he mean PIC of 0.41, and 702 DArT markers have the mean PIC of
.28. When markers were grouped into bins based on increasing

evel of polymorphism, the highest frequency of SSR, SNP, and DArT
arkers were found in bins 0.61–0.70, 0.41–0.50, and 0.21–0.30,

espectively (Fig. 1). A group of 100 DArT markers with the highest
evel of polymorphism (DArT-HP) has the mean PIC of 0.47, and all

arkers are grouped in the 0.41–0.50 bin (data not shown).
The DR of the 30 SSRs is 0.454, of the 34 SNPs is 0.266, of the 702

ArTs is 0.830, and of the 100 DArT-HP is 0.782 (Fig. 2). Fitting the
urve based on the following function:

R = n

n + nc
here n is the number of marker-loci, shows that 122 DArT marker-
oci are needed to get the same DR as the 30 SSRs, and 53 DArTs are
eeded to get the level as the 34 SNPs. Approximately 142 DArT-HP

oci are estimated to have the same DR value as 702 DArTs.
mean PIC value for SSRs is 0.59, for SNPs is 0.41, and for DArTs is 0.28. Distribution
is  not shown for 100 DArT-HP markers (PIC = 0.47), because all markers are grouped
in  the 0.41–0.50 bin.

3.2. Population structure

Analysis of the 54 varieties with 766 markers suggests that the
most likely number of populations is three (Fig. 3). Analysis with
(closed square), and DArT-HP (open square) marker-systems. The maximum DR
value of 30 SSRs, 34 SNPs, 702 DArTs, and 100 DArTs-HP are 0.454, 0.266, 0.830 and
0.782, respectively. For better resolution, data are shown only for 50 marker-loci.
Small insert at the top left corner shows data resolution curves for all DArT (longer
curve) and DArT-HP (shorter curve) marker-loci.
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Fig. 3. The optimal number of populations (clusters) estimated from STRUCTURE
(left axis – �K  for structure), and GenoDive (right axis – pseudo-F for clustering).
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Table 1
Estimated number of loci needed to achieve 100% success-rate.

Markers Genotyping Assignment Structure Clustering

SSR 17 31* 30 34*

SNP 23 58* 69* 103*

DArT-HP 50 125* 157* 247*

DArT 83 250 400 400

* The value for analyses that did not reach 100% success-rate with the avail-[ ( (
x
)c

)−d
]

nalyses were performed on 54 sugar beet varieties genotyped with 702 DArT mark-
rs,  30 SSR markers, and 34 SNP markers. Peaks for both approaches indicate that
he optimal number of populations is three (K = 3).

 varieties from American Crystal Hybrid Seeds. The second popula-
ion contains 21 varieties from three breeding companies: 18 from
illeshög, 3 from SeedEx, and a single accession from Holly Hybrids.
he third population includes only 9 varieties from Holly Hybrids
Fig. 4). In preliminary analyses we also tested the ‘No Admixture’

odel in STRUCTURE (data not shown). Grouping of accessions was
dentical to the admixture model. The only noticeable difference

as that under no admixture model all estimates of q reached the
alue of 1.

.3. Effect of number of marker-loci
In order to determine the effect of increasing number of
arker-loci on structure, clustering,  assignment, and genotyping, we

erformed analyses with a variable number of loci. In each case

ig. 4. Bar plot of population structure estimates for 54 sugar beet varieties from five
eed companies. Population structure was assessed with combined 766 DArT, SSR,
nd SNP marker-loci. Each accession is represented by a single vertical bar broken
nto  three colored segments, with lengths proportional to q of the three inferred
opulations (K = 3). The sum of q values for each bar is 1. Origin of the material is
hown at the bottom. Asterisk on the top indicates a single accession (HH06) that
oes not group into the same population as all other varieties from the same seed
ompany.
able number of loci was  estimated by optimizing the y = a × 1 − 1 +
b

function.

marker-loci were randomly chosen and success-rate of their perfor-
mance was obtained by comparing results to those achieved with
a full set of 766 markers. In general, the success-rate of analyses
increased with the growing number of marker-loci.

Seventeen SSR markers were enough to distinguish all varieties
in genotypic diversity analysis (genotyping), while 30 markers were
needed to correctly assign all varieties into populations (structure)
(Table 1 and Fig. 5a). Assignment and clustering of varieties into pop-
ulations reached 99.4% and 99.1% success-rate, respectively, when
all 30 SSR markers were used for analysis with GenoDive. Overall,
the AUC value (5–30 markers) for clustering (2149) was  significantly
smaller than those for the other types of analyses. The largest AUC
value was reached for genotyping (2450), but it was  not significantly
different from the AUC value for assignment (2381).

Twenty-three SNP markers were needed to achieve 100%
success-rate of genotyping (Table 1 and Fig. 5b). When the full set
of 34 SNPs were used for analyses, success-rates of assignment and
clustering with GenoDive were 94.4% and 92.5% respectively, while
success-rate of structure was 90.7%. The significantly highest AUC
value (5–34 markers) was calculated for genotyping (2763), while
the smallest one was  reached for clustering with GenoDive (2089).

To achieve 100% success-rate with DArT markers, 83 loci were
needed for genotyping, 250 loci were needed for assignment of vari-
eties, and 400 loci were needed for structure and clustering (Table 1
and Fig. 5c). The AUC values (5–702 markers) for the four types of
analyses were divided into two  groups with statistically different
values. Higher AUC values were detected for genotyping (68,834)
and assignment (68,009), while lower values were calculated for
structure (64,683) and clustering (65,196).

Fifty DArT-HP markers were needed to reach 100% success-rate
of genotyping (Table 1 and Fig. 5d). When 100 DArT-HP markers
were used for analyses, the success-rate of assignment was 99.1%,
structure 97.2%, and clustering 87.0%. The highest AUC value (5–100
markers) was reached for genotyping (9194), while the smallest one
was reached for clustering (6989).

3.4. Comparison of marker-systems

Because the number of marker-loci from each marker-system
(including DArT-HP sub-system) that were used for genotyping
were unequal, a direct comparison of AUC values was  not possi-
ble. To compare performance of marker-systems in different types
of analyses, we  calculated AUC values only for the identical subsets
using 5, 10, 15, 20, 25, and 30 marker-loci (Table 2). In genotyp-
ing analyses the highest AUC values were observed for SSR (2450)
and SNP (2363) markers. In contrast, the significantly smallest AUC
value was  calculated for DArT markers (1854). In both assignment
and structure analyses the significantly highest AUC values were
achieved for SSR markers (2381 and 2303, respectively), while the

significantly lowest values were observed for DArT markers (1760
and 1468, respectively). In clustering analyses the results were sim-
ilar to those seen at assignment and structure, with SSR reaching
the highest AUC value (2149) and DArT reaching the smallest AUC
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Fig. 5. Effect of the increasing number of marker-loci on the success-rate of genotyping (op
square). The AUC (Area Under the Curve) values are shown for SSR (a), SNP (b), DArT (c),
followed by different letters are significantly different at p ≤ 0.05.

Table 2
AUC values (5–30 markers) for four types of analyses when using different marker-
systems.

Marker-system Genotyping Assignment Structure Clustering Mean

SSR 2450 a 2381 a 2303 a 2149 a 2321 a
SNP 2363 a 2078 b 1966 b 1746 b 2038 b
DArT-HP 2197 b 1989 b 1859 b 1555 bc 1900 c
DArT 1854 c 1760 c 1468 c 1398 c 1620 d
Mean* 2216 2052 1899 1712
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alues within a column followed by different letters are significantly different at
 ≤ 0.05.

* All mean values within the row are significantly different at p ≤ 0.05.

alue (1398). However, AUC value for DArT markers was not statis-
ically different from the one observed for DArT-HP markers (1555).

hen AUC values calculated for genotyping,  assignment, structure,
nd clustering were combined; differences among the four marker-
ystems were significant. The mean AUC values decreased in the
rder SSR (2321), SNP (2038), DArT-HP (1900), and DArT (1620).
verall comparison of analyses revealed the highest AUC value

or genotyping (2216), followed by assignment (2052) and structure
1899). The smallest value was observed for clustering (1712). All
air-wise differences were significant at p-value of at least 0.05.

. Discussion

.1. Marker polymorphism and data resolution
The level of marker polymorphism as estimated by average PIC
alue was the highest for SSR markers (0.59), followed by SNP mark-
rs (0.41), and the lowest for DArT markers (0.28). The results for
SR and DArT markers are similar to those observed on cassava,
en circle), assignment (closed circle), structure (open square), and clustering (closed
 and DArT-HP (d) marker-systems. AUC values within each type of marker-system

where PIC of 36 SSRs was 0.63 and PIC of 251 DArTs was 0.33 [7].  The
higher PIC values for SSR markers than those for SNP or DArT mark-
ers are common, because multiallelic markers can reach higher PIC
values. For example the maximum possible PIC for biallelic markers
(such as SNP) is 0.5, while for tetraallelic markers it is 0.75.

All marker-systems show the expected shape of the data resolu-
tion curve with a relatively steep start previously observed in other
datasets [12]. The starting point of the SSR curve (0.054) was higher
than the starting points for the SNP (0.019) and DArT (0.013) curves
(Fig. 2). This was  expected because a multiallelic SSR contains more
information than a single SNP or DArT marker-locus. Interestingly,
the starting points of DR values for DArT-HP marker-system (0.064)
were even higher than those for SSR. This may  be due to the fact
that the DR measures the correlation between similarity matrices
based on two random halves of the dataset. Because correlation is
largely determined by extremes and the present set of varieties is
well structured, DArT-HP markers with high PIC value yield higher
correlation than multiallelic SSRs. DArT markers with low PIC val-
ues describe mostly finer structure within main populations and
contribute little to the DR, thus leading to low DR values for the
complete set of 702 DArTs.

4.2. Population structure

A common problem in population genetics studies is assigning
an accession to one of K populations on the basis of its geno-
type and information about distribution of the alleles in the K

populations [3]. The knowledge of population structure, genetic
relationship among varieties and identification of genotypes is
useful for germplasm development, variety protection, population
genetics and geneflow studies, and gene mapping. In this study
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SNPs). Also, repeatability (repeated analysis of the same material)
0 I. Simko et al. / Plant

e analyzed varieties originating from five sugar beet seed com-
anies. All varieties (with a notable exception of HH06 from Holly
ybrids) originating from the same seed company always grouped

ogether when analyzed with the full set of 766 markers. Interest-
ngly, varieties from different companies were consistently placed
nto the same inferred populations, indicating their genetic similar-
ty. For example, all material from Betaseed and American Crystal
ybrid Seeds grouped together, while all varieties from Hilleshög
nd SeedEx formed a different population. Holly Hybrids vari-
ties (except accession HH06) were distinctly separated from other
ested material. Grouping of material from different seed com-
anies together is possibly due to intertwined history of many
reeding programs. For instance, both Hilleshög and SeedEx trace
heir origin to the Great Western Sugar Company, while Ameri-
an Crystal Hybrid Seeds became a part of Betaseed (Lewellen and
cGrath, Personal communication).
Information about parental material that was used to develop

ybrid varieties is proprietary thus it is not possible to compare
edigree information with the population structure observed in
his study. However, the co-dominant nature of the SSR and SNP

arkers allowed us to test the hypothesis of a common parent. This
nalysis indicates that none of the breeding companies used only a
ingle common parent for developing all hybrid varieties included
n our study, and that no hybrid variety from either Holly Hybrids
ten varieties) or SeedEx (three varieties) shares a common parent
ith other varieties from the same company (Supplementary file 4).
owever, the hypothesis of a common parent was not rejected for

ome pairs of hybrid varieties originating from Betaseed, American
rystal Hybrid Seeds, and Hilleshög companies. We  also detected
arieties from different breeding companies (but placed in the same
opulation by STRUCTURE and GenoDive programs) that show a
ossibility of having a parent in common. Taking into consideration
he observed distribution of genotypes in the SNP and SSR datasets,
e calculated for a pair of varieties the chance of getting at least one

llele in common at all loci is 2.8 × 10−5. This chance increases to
he maximum of 1.6 × 10−4 for the 0.92 cut-off. Considering 1431
airwise comparisons among 54 varieties, we theoretically expect
etecting a common parent for only 0.041–0.236 pairs of varieties
y a chance alone. If the calculation of a chance is based on the
requency of alleles in the SNP and SSR datasets and assumption
f the Hardy–Weinberg equilibrium, the number of pairs increases
o the 0.536–1.131 range, still substantially less then 37 pairs of
arieties that were observed in our analysis of a common parent
Supplementary file 4). However, it needs to be pointed out that
ur analysis was based only on a single, randomly selected plant
er hybrid variety. Moreover, this analysis does not provide the
vidence of a common parent per se,  but rather it identifies pairs
f hybrid varieties for which a possibility of having a common (or
ery closely related) parent cannot be rejected.

Previously Smulders et al. [23] genotyped 40 sugar beet varieties
riginating from 13 seed companies with 25 SSRs. They observed
hat nine (out of 10) varieties from a single company formed a
eparate branch, but there was no clear structure in the genetic
elatedness of other varieties. However, these clustering results
ere based on a relatively small sample of varieties (nine compa-
ies each were represented by only one or two varieties). Including
ore material may  provide a better resolution [24] and separate

arieties from individual companies.

.3. Effect of dominant markers

Molecular markers compared in this study belong to both dom-

nant and co-dominant marker-systems. Despite some amount of
enotypic uncertainty, dominant alleles provide correct estimates
f population structure when they are handled properly [13]. Since
o-dominant SNP markers and dominant DArT-HP makers used in
ce 184 (2012) 54– 62

the present study have approximately similar PIC (0.41 and 0.47,
respectively), the effect of dominance could be roughly estimated
(assuming that this is the only difference between the two marker-
systems). There were approximately 2.2× more DArT-HP markers
needed for genotyping and assignment, 2.3× more for structure, and
2.4× more for clustering.  These empirical data are in good agree-
ment with modeling results that showed that under supervised
clustering about 1.7× more dominant than co-dominant markers
are needed to attain the same success-rate [3].

De Riek et al. [25] and later Smulders et al. [23] genotyped sugar
beet cultivars with SSR markers and tested a dominant scoring of
alleles in which marker bands were recorded as either present
or absent. Results of analyses performed with dominantly and
co-dominantly scored markers were similar, indicating that both
scoring methods can be used to distinguish genotyped material
[23].

4.4. Comparison of marker-systems

Our primary criterion for evaluating the success-rate of assign-
ment, structure, and clustering is based on assignment of varieties
into the same populations as was detected with a combined set
of all 766 markers. We  assumed that an infinite number of mark-
ers describes the population structure perfectly and that any very
large set of markers yields the same results [12]. The progress of
success-rate curves indicates that this assumption is correct and
a large number of markers of any type infer the same grouping of
varieties as the combined set of all markers. Results from our empir-
ical analyses are in agreement with modeling simulations which
showed that the error rate of clustering rapidly decreases with a
growing number of marker-loci [19].

It was  previously proposed that to obtain comparable assess-
ments of population structure and genetic diversity, around 7–11
times more SNPs are required than SSRs [26]. In our analyses only
about 1.4 (genotyping) to 3 (clustering)  times more SNP markers
were needed to achieve 100% success-rate (Table 1). This sub-
stantial difference between two  studies may  be caused by use of
different plant species (maize vs.  sugar beet) with a dissimilar pop-
ulation structure. Another very likely possibility is that SNPs used
in our study undergone selection when tested on various sets of
sugar beet material, whereas selection performed on the genomic
SSRs and the EST-SSRs was much more limited.

Selecting only highly polymorphic loci leads to a substantial
reduction in number of markers that are needed to reach 100%
success-rate. For example, using only the most polymorphic DArT
loci (DArT-HP sub-system) decreases the number of marker-loci
that are needed for analyses by approximately 38% for cluster-
ing, 40% for genotyping, 50% for assignment, and 61% for structure
(Table 1). At the same time, data resolution of DArT-HP markers
was substantially higher than data resolution of DArTs. However,
the complete set of DArT markers possibly describes a relationship
of varieties within each population more accurately then the more
limited DArT-HP subset.

In addition to performance (success-rate), other important
factors for selecting suitable marker-system are quality and repro-
ducibility of data. In our datasets only 3.1% SSRs, 0.4% DArTs, and
0.2% SNPs data were missing (data not shown). A lower percentage
of missing data in SNP- than in SSR-based system was previously
observed also in maize [27], though the percentages of missing data
were higher then in our datasets (13.8% for SSRs and 2.1–3.1% for
was better for SNPs (98.1–99.3%) than for SSRs (91.7%) [27]. We  did
not test repeatability of these two marker-systems, but DArTs used
in our study have repeatability of 99.5% (data not shown), which is
comparable with results from SNP-Invader assay [27].
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.5. Comparison of analyses

Regardless of the marker-system, substantially fewer markers
ere needed for genotyping.  Of the other three remaining analyses,

ssignment needed the least number of markers, while clustering
equired the highest number of marker-loci. Although the differ-
nces in the overall AUC values among these three types of analyses
re relatively small, they are significant at p-value of 0.05 (Table 2).
igher AUC values for assignment than for clustering or structure are
ot surprising, as this type of analysis assigns only a single acces-
ion into one of the known populations already containing all other
arieties. On the other hand, clustering and structure assign all vari-
ties into predefined (supervised clustering problem) number of
opulations or clusters. It is interesting to note that from the two
pproaches used for detection of population structure, equal num-
er or fewer loci is needed for structure (carried out by STRUCTURE)
han for clustering (carried by GenoDive). The difference was the

ost pronounced for DArT-HP markers, where approximately 36%
ess loci were needed to reach the same (100%) level of success-rate.
his information is important for selecting an appropriate analyti-
al approach when only a limited number of markers are available
or detection of population structure. However, our observations
re based only on a single set of hybrid varieties with a highly struc-
ured population. More analyses on populations with both similar
nd different structure are needed to confirm differences between
TRUCTURE and GenoDive observed in our study.

.6. Conclusions

We studied three types of marker-systems for their use in
etecting genetic diversity and population structure in cultivated
ugar beet and for assigning a variety into a population. The set of 54
arieties from five seed companies was genotyped with 766 mark-
rs (SSR, SNP, and DArT) and analyzed for population structure.
ach of the three inferred populations contained varieties from
nly one or two seed companies (with a single exception). These
opulations were well separated from each other as indicated
y consistent and identical results achieved both by STRUCTURE
Figs. 3 and 4) and GenoDive.

The number of marker-loci that were needed to reach 100%
uccess-rate depended upon the marker-system; but in general,
ore of them were required for detection of population struc-

ure than for detection of genotypic diversity. From all analyses
he fewest number of marker-loci were needed for genotyping with
SRs, where no further gain was observed past 17 marker-loci. On
he contrary, the most marker-loci (400) were needed for detection
f population structure (clustering and structure) with DArT markers
Table 1). Overall, per locus success-rate decreased from SSR, fol-
owed by SNP, DArT-HP, and DArT. These results correspond to the
evel of marker polymorphism and co-dominant/dominant nature
f markers. Though more DArTs than SSRs or SNPs are needed to
each 100% success-rate, using only highly polymorphic DArTs sub-
tantially decreases the number of marker-loci that are needed for
nalyses and improves consistency of the dataset (higher DR value).

The results from this study provide a premise to selecting the
arker-system(s) and a number of marker-loci needed for a par-

icular analysis of sugar beet genetic diversity. However, in our
omparisons we did not consider aspects related to marker devel-
pment and use, such as frequency of markers in the genome,
eliability and reproducibility of data, amenability of markers to
igh-throughput screening, or the economy of genotyping. All

hese factors together with success-rate need to be taken into con-
ideration by individual laboratories when selecting the best type
f molecular markers for genotyping (fingerprinting), detection of
opulation structure, and assignment of varieties into populations.
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[
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