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ABSTRACT 

 In the western Great Plains, climate dictates dryland wheat (Triticum aestivum, L) 

productivity.  Producers use inorganic N fertilizers to improve crop yields in this region, while 

municipalities recycle sewage biosolids in the area.  Will biosolids (from the Littleton/Englewood, 

CO Wastewater Treatment Plant) applications to western Great Plains dryland agroecosystems 

interact with weather to affect wheat production?  To this end, we regressed crop yields on 

weather variables from 2000 through 2011 at a site about 40 km (approximately 25 miles) east of 

Byers, CO (Byers).  We used SAS (Proc Reg) to develop several multiple regression models to 

predict crop yields.  Our model of choice included four weather parameters for Byers wheat 

production.  Regression variables included September and May precipitation and October and 

May monthly mean temperatures.  Biosolids or nitrogen fertilizer application did not appear in 

our chosen model.  We validated the wheat models using weather data and yields from the 

Colorado State University (CSU) Crops Testing Program from Akron, Burlington, Lamar, and 

Yuma, CO.  According to t-tests comparing mean observed and predicted yields, the Byers model 

predicted yields from 2000-2011 at these locations with a +5.3% mean absolute error.  A positive 

result of these analyses is that biosolids produced the same crop yields as commercial N fertilizer 

from 2001 through 2011. 
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INTRODUCTION 
 

Extreme heat and drought often plague dryland crop production in the West Central 

Great Plains.  Development of multiple regression models that account for weather variability 

could provide a predictive tool for dryland wheat and corn producers using wheat-fallow or 

wheat-corn-fallow rotations.  For example, Nielsen et al. (2010) used regression analyses to 

determine that the critical rainfall period for dryland corn grown at Akron, CO was between 16 

July and 26 August.  Their model, however, did not include temperature effects.  Lauenroth et al. 

(2000) used mean annual precipitation and temperature to model winter wheat production in 

northeastern CO and northern KS.  They postulated that regions with annual precipitation ≥ 39.5 

cm (15.6 inches) rendered wheat-fallow (WF) rotations as inefficient water-management 

systems.  Most of eastern Colorado receives less than 39.5 cm (15.6 inches) of precipitation in 

any given year, and thus WF may be a useful system for that region. 

 Several researchers have developed multiple regression models using weather variables 

to predict wheat yields (Landau et al., 1998, 2000; Smith and Gooding, 1999; Porter and Gawith, 

1999; Lobell and Burke, 2010).  All of the referenced models utilized precipitation and 

temperature data to predict yields with the primary focus on production in the United Kingdom.  

Landau et al. (2000) developed conservative models based on wheat phenology; anthesis dates 

were critical in their predictive models.  Lobell and Burke (2010) stated: “Results suggest that 

statistical models, as compared to CERES-maize, represent a useful if imperfect tool for 

projecting future yield responses, with their usefulness higher at broader spatial scales.”  CERES-

maize is a corn (Zea mays, L.) growth and development simulation model. 

 Because of low leaching or runoff potential of NO3-N released from biosolids when used 

as a fertilizer, eastern Colorado is considered an ideal location for biosolids recycling (Lerch et al., 
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1990).  Barbarick et al. (2010, 2012) have conducted long-term studies on the efficacy of 

biosolids application in dryland wheat-fallow and wheat-corn-fallow rotations.  They reported a 

above county average yield response (above 2 Mg ha-1 or 30 bushels/acre) to biosolids or N 

fertilizer applications when above mean precipitation was received.  Below mean annual rainfall 

usually produced no response to either type of fertilizer.  Also, temperature effects on yields 

seemed common.  For example, the highest May mean maximum temperature (24.7⁰C or 76.5⁰F) 

from 1999-2011 was observed in 2006 (Table 1) and a wheat-crop failure was experienced that 

year.  Consequently, we decided to determine what weather parameters, and if biosolids or 

nitrogen fertilizer applications significantly affected wheat yields from 2001 to 2011.  Nielsen and 

Vigil (2009) discussed the importance of stored soil moisture on wheat production in WF 

rotations.  Basically our study was not originally intended to be a model development project and 

thus no planting time soil water data were collected. 

Our hypotheses were: 

1). Wheat yields could be predicted by multiple regression models utilizing weather variables 

and consideration of biosolids or nitrogen fertilizer application at the Byers research site.  

We used SAS Institute (2013) Proc Reg to find the most conservative model that had an R2 

of 0.90 or greater, Mallow’s Cp less than the number of regression variables in the model, 

and a Durbin-Watson value near 2.0 ± 0.5. 

2). If the model of choice does not contain biosolids addition or N rates as regression 

variables, then the model’s yield predictions will match yields (according to t-tests) from 

the CSU Crops Testing Program at Akron, Burlington, Lamar, and Yuma, CO. 
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MATERIALS AND METHODS 

The Byers research site in eastern Adams County is located on land owned by the Cities of 

Littleton and Englewood (L/E).  The latitude/longitude for the plot corners are 

39.7631921/103.7973089 (southwest), 39.7631773/103.7881839 (southeast), 

39.7686818/103.7972862 (northwest), 39.7686588/103.7881651 (northeast).  Soils belong to the 

Adena-Colby association (Adena soil is classified as a fine-loamy, mixed, active mesic Ustic 

Paleargid and Colby is classified as a fine-silty, mixed, superactive, calcareous, mesic  Aridic 

Ustorthent; Natural Resource Conservation Service, 2013).  No-till management was used in 

conjunction with crop rotations of WF and wheat-corn-fallow (WCF).  We installed a Campbell 

Scientific® weather station at the north edge of the plots in April 2000.  Mean weather data are 

presented in Table 1. 

  

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
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Table 1.   Range and mean of weather factors at the Byers research sites, 1999-2011. 

Month  Maximum temp. Mean Minimum temp. Mean Precipitation Mean 

  ----------------------------- ⁰C† ----------------------------  ---------- cm‡ ---------- 

January  -0.6 – 11.2 9.5 -11.7 - -4.2 -7.0 0.00 – 0.69 0.20 

February  3.3 – 11.3 6.8 -9.4 – -4.1 -7.1 0.00 – 0.64 0.23 

March   10.0 – 16.2 12.6 -7.2 – 0.8 -2.6 0.25 – 2.59 1.04 

April  15.0 – 19.5 16.9 -1.1 – 3.1 1.2 0.76 – 6.38 3.15 

May  18.9 – 24.7 22.1 3.3 – 7.7 6.2 2.03 – 9.52 4.29 

June  25.0 – 31.9 28.4 10.6 – 13.8 11.8 0.76 – 12.0 4.93 

July  30.6 – 36.3 33.0 13.9 – 16.8 15.8 0.51 – 9.12 3.48 

August  28.3 – 32.8 30.8 12.8 – 16.4 14.6 3.81 – 17.4 6.48 

September  22.2 – 29.0 26.8 7.2 – 11.1 9.7 0.00 – 3.66 1.60 

October  12.2 – 22.4 18.6 -0.6 – 5.1 3.0 0.25 – 3.20 1.32 

November  8.9 – 13.8 12.1 -4.4 – -1.0 -2.3 0.00 – 1.96 0.64 

December  2.2 – 8.8 6.2 -11.1 – -5.2 -7.2 0.00 – 0.41  0.10 

Total      23.9 - 40.4 27.5 

 

†   (     )     

‡         
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 All phases of each rotation were present each year (10 total plots per replication) in a 

random complete block design in a split-plot arrangement with two replications.  Each plot was 

30 m (100 feet) wide by approximately 0.80 km (0.5 mile) long.  Each 30-m (100 feet) plot was 

split so that one 15-m (50-foot) section received commercial N fertilizer and the second 15-m 

(50-foot) section received biosolids (applied by L/E with a rear-discharge manure spreader).  The 

biosolids and N fertilizer treatments were first applied in fall 1999.  We estimated that each Mg 

(metric ton or ton) of dry biosolids would provide 8 kg (16 pounds) available N for each 

application (Barbarick and Ippolito, 2000, 2007).  Biosolids and N fertilizer rates were based on 

soil test recommendations for each crop.  The last biosolids and N fertilizer application was fall of 

2004.  Because of underestimation of N mineralization from the biosolids and drought-induced 

crop failures where no N was removed from the soil (Barbarick et al., 2012), NO3-N accumulated 

to the extent that N additions were not required in subsequent years based on soil testing and 

fertilizer recommendations for dryland winter wheat (Davis and Westfall, 2009).  Wheat was 

harvested in July 2000 through 2010, except 2006 when a crop failure was experienced.  The 

grain was harvested from four areas of 1.5 m (5 feet) by approximately 30 m (100 feet) within 

each subplot.  The models were developed using 2000-2011 yield data.  We employed our 

selected model for Byers to estimate the 2012 yields. 

 We employed SAS Proc Reg (SAS Institute, 2013) to develop multiple regression models 

using the variables listed in Table 2.  We focused on the Maximum R2 Improvement (MAXR), 

Minimum R2 Improvement (MINR), Adjusted R2 Selection (ADJRSQ), and Mallow’s Cp Selection 

(CP; Mallows, 1973) model selections.  We eliminated models which contained nonsensical 

parameters such as a negative effect of March precipitation on wheat production. 
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Table 2. Model parameters used in multiple regression analyses for wheat at Byers. 

Byers wheat 

 Each month’s mean maximum temperature 

 Each month’s mean minimum temperature 

 Monthly mean temperature 

 Each month’s total precipitation 

 Each month’s total evapotranspiration 

 Rotation (1=WF, 2=WCF) 

 September through March precipitation (vegetative phase) 

 April through June precipitation (reproductive phase) 

 Total precipitation (July through June) 

 Total evapotranspiration (July through June) 

 Growing season precipitation (September through June) 

 Type of fertilizer (N fertilizer=1 or biosolids=2)  

 Number of fertilizer applications 

 Ratio of monthly precipitation to mean maximum temperature 

 Interaction between monthly precipitation and mean monthly 

maximum 

 

  



10 

 

When screening the regression results, we used selected models that had an R2=0.90 or 

greater, a Mallow’s Cp less than the number of regression variables in the model, and a Durbin-

Watson (Durbin and Watson, 1950, 1951) value near 2.0 ± 0.5.  Also, we utilized an F-test 

(Graphpad.com, 2013) to compare our models to more complicated models (i.e., with more 

regressors) to ensure parsimony.   

 If the models did not include a biosolids/N fertilizer parameter, we used our wheat 

models to predict yields for similar wheat varieties (Prairie Red or Ripper depending on the year) 

grown in the CSU Crops Testing Program at Akron, Burlington, Lamar, and Yuma, CO from 2000 

to 2012 (Colorado Agricultural Experiment Station, 2013).  These locations were selected since 

they had the same Campbell Scientific® weather station model that we used at the Byers 

location. The data were available from CoAgMet (CoAgMet, 2013).  Not all weather data were 

available for all sites for all years due to weather station errors or shutdowns.  We did not 

include data for the years where key weather data was missing in our model development.  We 

used a paired-wise t-test to determine if a statistical difference (P=0.05) existed between mean 

observed and mean predicted yields.  We also calculated the %mean absolute error for each 

model and model test. 

 

RESULTS AND DISCUSSION 

Models 

Table 3 provides the model that best met the criteria of the fewest regression variables 

with an R2 of 0.90 or greater, a Mallow’s Cp less than the number of regression variables in the 

model, and a Durbin-Watson value near 2.0 ± 0.5.  September precipitation, October mean 

temperature, and May precipitation had significant positive impacts on wheat yields. 

http://graphpad.com/guides/prism/6/curve-fitting/


11 

 

Table 3. Selected multiple regression model parameters for weather and biosolids or N 
fertilizer effects on grain yields at Byers research site, 2000-2011.  

 
 
Variable Model 

Coefficient 

± std. error 

t 

value 

Probability Partial or 

Total R2 

Mallow’s 

Cp 

Durbin 

Watson D 

September precip., cm 

October mean temp., ⁰C 

May precip., cm 

May mean temp., ⁰C 

Total model 

0.59 ± 0.22 

0.21 ± 0.13 

0.41  ± 0.08 

-0.20 ± 0.11 

 

2.65 

1.64 

5.36 

-1.81 

0.016 

0.119 

<0.001 

0.087 

0.520 

0.177 

0.181 

0.019 

0.897 

 

 

 

 

3.76 

 

 

 

 

1.68 

            
  

  
 

     (              )

     (                )                              

     (              )

     (                )

            
       

    
 

   (                  )

    (                )

   (                  )

    (                )
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The September precipitation is important for plant emergence and establishment. Higher 

October mean temperatures would improve tillering before winter dormancy.  May precipitation 

is critical, since this is the anthesis period for hard-red winter wheat in eastern Colorado.  The 

Byers model also included a negative May mean temperature effect.  Higher temperatures in 

May would be a negative factor because they likely lead to more rapid soil-moisture depletion, 

leaving less soil water reserve for the critical anthesis period.  Wang et al. (1992) used simulation 

modeling to predict that an increase in mean air temperature of 3⁰C (5.4⁰F) during anthesis could 

decrease wheat biomass by 25 to 60%, depending on the cultivar. 

 The t-tests showed that predicted were not significantly different than actual yields (Fig. 

1).  The model did not include type of fertilizer as a regression variable indicating that biosolids 

had the same effect on yields as N fertilizer.  The Byers model accurately predicted the actual 

yield.  The 2012 yield was underestimated (Fig. 1) because the May precipitation was only 0.35 

times the average for 2000-2011 (1.5 versus 4.3 cm or 0.6 versus 1.7 inches) and the May mean 

temperature was 1.11 times greater than the average for 2000-2011 (15.6 versus 14.1⁰C or 60.1 

versus 57.4⁰F).  The % mean absolute error was +9.2. 
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Figure 1. Observed and predicted (model based on 2000-2011 data) wheat yields at the 

Byers site, 2000-2012.  Error bars represent the standard deviation of the 
observed means.  Bushels/acre ≈ 15*Mg ha-1 
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Model Testing 

 We validated the Byers wheat model (Table 3) with wheat yields from 2000 to 2011 at 

Akron, Burlington, Lamar, and Yuma, CO (Fig. 2).  The Byers model provided a %mean absolute 

value over all locations of +5.3% and the t-test indicated the probability level for differences 

between predicted and actual means was 0.861. 

 

Figure 2. Average observed and predicted yields (using the Byers regression model) for 
Akron, Burlington, Lamar, and Yuma, Colorado, 2001-2012.  Error bars represent 
the standard deviation of the observed and predicted means.  Bushels/acre ≈ 
15*Mg ha-1 
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each site-year.  The model overestimated (more than one standard deviation above the mean; 

Fig. 3) the 2005 yield at Burlington and Yuma, the 2008 yields at Lamar and the 2011 yield at 

Akron and underestimated the 2010 yield at Lamar.  For the yield overestimation at Burlington 

and Yuma in 2005, the yield contribution from September precipitation was 2.44 and  

1.67 Mg ha-1 (36 and 25 bushels/acre), respectively, greater than the average (2000 to 2011)  

 

 

Figure 3. Average observed versus predicted yields (using the Byers regression model) for 
Akron, Burlington, Lamar, Yuma, and North Bennett, Colorado, 2001-2012.  
Bushels/acre ≈ 15*Mg ha-1  
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contribution.  Overestimation of the May precipitation impact on projected yields led to the 2008 

overestimation at Lamar and the 2011 overestimation at Akron (2.82 and 4.21 Mg ha-1 or 42 and 

63 bushels/acre greater than the average contribution for the May precipitation parameter, 

respectively).   The underestimation of the impact of September and May precipitation (1.85 Mg 

ha-1 or 28 bushels/acre less than the average contribution for the September plus May 

precipitation parameters) produced the underestimated 2010 predicted yields at Lamar.  Other 

considerations would be the negative impacts of insect or disease infestation. 

Our evaluation of the weather parameters in the Byers model is that the yield variations 

between observed and projected yields were influenced more by the precipitation variables than 

by the temperature variables. The contribution to the model R2 for September and May 

precipitation exceed the R2 values for October and May mean temperatures (Table 3). These 

results indicate that the Byers model could not reliably predict yields in a particular year; 

however, it may be used to look at the overall trend for the four test sites from 2000 to 2011.  

This supports the findings of Lobeell and Burke (2010) who essentially stated that statistical-

model results for predicting yield responses are useful at broader spatial scales. 
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CONCLUSIONS 

 We did accept hypothesis 1 since the Byers model met all criteria for “best fit”.  Neither 

biosolids nor N fertilizer application appeared in the “best fit” model (had an R2 of at least 0.90, a 

Mallow’s Cp less than the number of regressors, and a Durbin-Watson value of 2 ± 0.5) for wheat 

production from 2000-2011 at Byers.  These findings indicate wheat yields produced with 

biosolids at the Byers research site did not significantly differ from wheat yields produced with N 

fertilizer over the test period and biosolids application did not have any adverse production 

effects.  The largest contribution to the Byers model R2 came from September and May 

precipitation.  September precipitation helps establish the wheat crop before winter dormancy 

and May precipitation directly affects anthesis. 

 Validating the Byers model with weather and yield data from Akron, Burlington, Lamar, 

and Yuma produced non-significant differences between actual and predicted means and %mean 

absolute errors ranging from -2.2 to +23.9.  Thus, we accepted hypothesis 2 that the Byers model 

could reasonably predict average yields from 2000-2011 at the four test locations.  The scatter in 

the mean absolute error in any particular year, however, indicated the Byers model could not 

predict realistic annual yields. 
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