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Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to
alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects
on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils collected from across the conti-
nental U.S., and 2) two of the nine soils (Latahco and Rad silt loams from the Pacific Northwest) that were
sampled at two depths (5 and 15 mm) after being sprinkler irrigated. Along with an untreated control,
three surfactants (an alkyl polyglycoside, an ethylene oxide/propylene oxide block copolymer, and a blend
of the two) were spray applied by hand at rates of 0, 1, 1.63, 3.35, 4.79, or 8.14 kg active ingredient ha−1

to 1) air-dry, loose soil in Study 1 and 2) field-moist, tamped soil in Study 2 before being irrigated with
surfactant-free water at 88 mm h−1 twice, once for 0.33 h, then about 8 d later for 0.25 h. Tensile strength
was measured on oven-dry, 4- to 6.35-mm-diameter aggregates (18≤n≤37) of known mass for each treat-
ment using a load cell with an attached flat-tip probe moving at a constant 0.27-mm s−1 rate that applied
continuous strain to each aggregate until it failed. In Study 1, tensile strength ranged widely, from 27 kPa
for Adkins loamy sand to 486 kPa for Bolfar loam, averaged across surfactant treatments. Tensile strength
for all nine surfactant-treated soils averaged 164 kPa, 7% greater (P=0.099) than the control. In Study 2,
surfactants significantly affected the tensile strength of Latahco but not Rad aggregates, when averaged across
irrigations and sampling depths. After irrigation, aggregate tensile strength averaged 26% less (Pb0.001) at the
5- than 15-mm depth, likely due to droplet kinetic energy fracturing near-surface, intra-aggregate bonds or
surfactant leaching. All told, tensile strength varied more by soil series and depth than by surfactants.

Published by Elsevier B.V.
1. Introduction

Amajor determinant of soil erosion, loss of tilth, and surface sealing
is the structural failure of soil aggregates. The persistence and integrity
of soil aggregates depend on their ability to retain their shape and
strength when subjected to disruptive effects of transient stresses,
such as tillage, raindrop or irrigation droplet kinetic energy, or the like
(Rogowski et al., 1968; Watts et al., 1996). Crop sequences, manage-
ment practices, fertility, drainage, soil conditioners, organic matter,
irrigation, and water quality interact with aggregates to affect their
size and strength (Abid and Lal, 2009; Horn and Peth, 2009; Tormena
et al., 2008). Aggregate tensile strength, one of the most useful indica-
tors of soil structural condition, is the stress, defined as the force acting
per unit area, required to fracture interparticle bonds and cause aggre-
gates to fail under tension when force is applied (Dexter and
Kroesbergen, 1985; Horn and Dexter, 1989; Imhoff et al., 2002).

Soil aggregate tensile strength is important because it must be
small enough for tillage to economically produce a friable seedbed,
readers' benefit. By including
endation, or exclusion. USDA
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yet great enough to support the weight of heavy equipment with min-
imal compaction (Błażejczak et al., 1995; Munkholm et al., 2002).
Tensile strength is an important measure of 1) the quality of a seedbed
created by tillage, and 2) a seedbed's condition after rainfall or irrigation
(Kay et al., 1994). Tensile strength is also used to describe soil friability,
defined by Utomo and Dexter (1981) as the tendency of a soil mass to
crumble under applied stress. Utomo and Dexter (1981) quantified
soil friability in terms of a scaling factor, k, that related tensile strength
to aggregate size.

Aggregate strength is affected by a number of factors, especially
wetting and drying. Tensile strength decreases rapidly as dry aggre-
gates are hydrated (Dexter and Kroesbergen, 1985). As dry aggregates
imbibe water due to matric potential gradients, air can be entrapped
within them; associated stresses then form planes of weakness, partic-
ularly in soils that swell in a nonuniform manner (Watts and Dexter,
1998). Horn and Smucker (2005) noted that aggregate strength
depends upon 1) swelling and shrinking processes, 2) the intensity,
number, and timing of swelling and drying events, and 3) microbial
activity with associated organic exudates. Czarnes et al. (2000) also
reported that tensile strength was affected by plant growth, rooting,
and organic exudates. Tensile strength increased with soil organic C
and varied with depth (Guimaraes et al., 2009), increasing with depth
in the study of Blanco-Canqui et al. (2005). Aggregate strength increases
with soil clay content (Ben-Hur and Lado, 2008; Kemper et al., 1987),
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Table 1
Soils studied.

Soil series Texturea Stateb Taxonomic classification

USDAa FAOc

Adkins Loamy sand OR Xeric Haplocalcid Calcisol
Aksarben Silty clay loam NE Typic Argiudoll Phaeozem
Bolfar Loam CA Cumulic Endoaquoll Mollic Gleysol
Chino Sandy loam CA Aquic Haploxeroll Gleyic Kastanozem
Faceville Sandy loam GA Typic Kandiudult Acrisol
Grenada Silt loam MS Oxyaquic Fraglossudalf Fragic Albeluvisol
Latahco Silt loam ID Xeric Argialboll Mollic Planosol
Oxfordd Silty clay loam ID Vertic Haploxerept Vertic Cambisol
Rad Silt loam ID Xeric Haplocambid Calcisol

a Soil Survey Staff (2010).
b CA is California; GA is Georgia; ID is Idaho; MS is Mississippi; NE is Nebraska; OR is

Oregon.
c Nearest likely equivalent shown (IUSS Working Group WRB, 2007).
d Soil was mapped as an Oxford–Banida complex; hereafter referred to as Oxford.
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particularly when soils are dry (Barzegar et al., 1995). Blanco-Canqui
et al. (2005) and Seguel and Horn (2006) reported that tensile strength
increased with decreasing aggregate diameter. Similarly, Imhoff et al.
(2002) found that the tensile strength of oxisols decreased with
increasing aggregate volume.

Soil strength is dynamic; it changes temporally and spatially as
soil water contents change due to precipitation, irrigation, evapora-
tion, or plant uptake (Grant et al., 2001; Horn and Dexter, 1989;
Reszkowska et al., 2011; Watts and Dexter, 1998). As soil dries,
cementing agents such as soluble silica, CaCO3, or dispersed clay con-
centrate, then flocculate or precipitate at intra-aggregate contact
points, increasing tensile strength (Dexter, 1988; Kay and Dexter,
1992; Kemper et al., 1987; Lehrsch et al., 1991, 1993). Calcium ions
can also form bridges between organic colloids and clay surfaces
that strengthen aggregates (Edwards and Bremner, 1967). Barzegar
et al. (1994) also reported that Ca2+ increased the tensile strength
of soils with much Na+, though for two of five Australian soils,
strength was increased slightly more by Mg2+ than by Ca2+. Cation
effects on tensile strength, however, are not fully understood. For
example, on the remolded samples of Barzegar et al. (1994), strength
was increased more by Na+ than by either Mg2+ or Ca2+. Failure
zones and cracks form more readily in surface than subsurface soil
because surface soil undergoes more wetting and drying and, in tem-
perate regions, freezing and thawing (Hershfield, 1974; Lehrsch et al.,
1991; Watts and Dexter, 1998). Soil strength also changes spatially
because surface and near-surface aggregates are more often pierced
by plant roots than are subsurface aggregates (Watts and Dexter,
1998). Freezing and thawing decrease tensile strength temporally
(Reszkowska et al., 2011).

A soil's wettability may increase with its base status (van't Woudt,
1959). Soluble Ca2+ has been implicated as being partly responsible
for increased wetting of a subcritically water repellent soil, possibly
by suppressing the double layer thicknesses of soil clays (Lehrsch
and Sojka, 2011). Thinner diffuse double layers would lead in turn
to clay flocculation and, with drying, an increase in soil strength.

Little is known regarding the relationship between tensile
strength and soil water repellency. Since an increase in tillage (or dis-
turbance) increases tensile strength (Abid and Lal, 2009; Munkholm
et al., 2002; Reszkowska et al., 2011) but decreases soil water repel-
lency (Bryant et al., 2007; Hallett et al., 2001; Lehrsch et al., 2011),
tensile strength should be inversely proportional to soil water repel-
lency. Indeed, data presented by Reszkowska et al. (2011) suggested
a tendency for tensile strength to decrease as water repellency
increased.

Surfactants (wetting agents) are known to decrease soil water
repellency (Bially et al., 2005; Kostka, 2000). Not known, however,
are surfactant effects upon soil aggregate tensile strength. Surfactants
applied to production fields are commonly applied to both wettable
and non-wettable soil areas because water repellency varies spatially
(Doerr et al., 2000). Water repellency, though largely problematic for
soil water management, does improve soil structure (Mataix-Solera
and Doerr, 2004). Consequently, surfactants may or may not improve
a soil's structural condition, with effects likely differing between
water repellent and wettable soils, and from one soil to another
(Lehrsch, in press; Lehrsch and Sojka, 2011; Lehrsch et al., 2011).

Therefore, the objective of Study 1 was to evaluate surfactant
effects on the tensile strength of aggregates from nine wettable U.S.
soils in agricultural production. The objective of Study 2 was to char-
acterize the response of surfactant-treated aggregates at two depths
to sprinkler irrigation. Study 1's objective was chosen, in part, to
confirm and elaborate upon preliminary findings that suggested
that 1) changes in a soil's aggregate strength depended upon surfac-
tant properties, and 2) a particular surfactant did not affect the tensile
strength of all soils similarly. Study 2's objective was chosen to fur-
ther our knowledge of the strength of surfactant-treated aggregates
when subjected to water droplet kinetic energy.
2. Materials and methods

2.1. Surfactants and soils

The research was conducted at the United States Department of
Agriculture (USDA), Agricultural Research Service, Northwest Irriga-
tion and Soils Research Laboratory, Kimberly, ID, USA. We studied
three miscible, nonionic liquid surfactants manufactured by Aquatrols
Corporation of America, Paulsboro, NJ. One surfactant was the com-
mercially available IrrigAid Gold® (IGG) and a second was an ethyl-
ene oxide/propylene oxide block copolymer (COP) that made up
approximately 60% of the 0.17 kg active ingredient kg−1 in IrrigAid
Gold (Bially et al., 2005). The third surfactant, supplying the
remaining 40% of IGG's active ingredient, was an alkyl polyglycoside
(APG). The surfactant IGG as marketed has a pH of 6.4 and a specific
gravity (SG) of 1.024 kg L−1, COP has a pH of 3.2 and SG of
1.043 kg L−1, and APG has a pH of 4.3 and SG of 1.149 kg L−1.
Other properties of the surfactants were given by Lehrsch et al.
(2011).

Nine soils from the continental U.S. were studied (Table 1). The
soils represented a broad cross-section of many of those important
to U.S. agriculture. Five major soil orders (Soil Survey Staff, 2010)
were represented with textures ranging from loamy sand to silty
clay loam. The soils' cropping histories and global positioning system
coordinates where sampled were given by Lehrsch (in press). Proper-
ties of the soils' Ap horizons are given in Table 2. Particle size was
determined using the pipette method (Gee and Or, 2002) and pH
using a combination electrode in a 1:1 soil–water slurry (Thomas,
1996). Inorganic C was calculated from the CaCO3 equivalent, mea-
sured using the pressure-calcimeter method (Sherrod et al., 2002).
Organic C was calculated as the difference between inorganic C and
total C, with the latter measured by the combustion of a 50-mg sam-
ple in a Thermo-Finnigan FlashEA1112 CNS analyzer (CE Elantech
Inc., Lakewood, NJ). Cation exchange capacity (CEC) and clay mineral-
ogy were obtained from the USDA Natural Resources Conservation
Service Soil Characterization Database (National Cooperative Soil
Survey, 2012), from published sources (Lewis et al., 1991; McDaniel
and Hipple, 2010), or measured locally when possible. Gravimetric
water contents at a matric potential of −3 kPa were measured
using a pressure plate apparatus (Reynolds and Topp, 2007). The
Wilhelmy plate method was used to measure the advancing contact
angle (Lamparter et al., 2006).

Two studies were conducted. The first investigated surfactant
effects on the tensile strength of nine U.S. soils. The second study,
based in part upon the findings of the first, focused upon irrigated
aggregate tensile strength responses with depth to surfactant appli-
cations. For the latter investigation, we used two of the earlier nine



Table 2
Properties of the Ap horizona of nine soils.

Soil property Adkins Aksarben Bolfar Chino Faceville Grenada Latahco Oxford Rad

Particle size distribution, g kg−1

Sand (0.05 to 2 mm) 840 50 340 610 750 70 90 180 250
Silt (0.002 to 0.05 mm) 110 610 400 270 80 740 650 430 610
Clay (b0.002 mm) 50 340 260 120 170 190 260 390 140

pH (1:1, water) 6.3 6.3 6.8 7.8 6.3 4.7 5.5 6.8 7.8
Organic C, g kg−1 7.5 23.9 11.7 27.1 5.8 15.9 19.7 14.6 10.2
Inorganic C, g kg−1 0.4 0.8 0.5 5.9 0.5 0.2 0.3 1.4 12.4
CaCO3 equivalent, g kg−1 3.2 6.6 3.8 49.0 4.5 1.5 2.2 11.6 103.4
Cation exchange capacity

(CEC), cmol(+) kg−1 10.1 31.2 20.2 27.6 4.2 13.3 24.3 NAb 16.2
Water content at −3 kPa, kg kg−1 0.31 0.46 0.30 0.38 0.17 0.40 0.43 0.37 0.42
Advancing contact angle, degrees 5.9 21 0 7 0 46 34 9.3 1.0
Dominant clay mineral(s)c MT/MI MT NA NA KK KK/MI/MT MI MI IL

a Samples were collected from the surface to 0.10, 0.15, or 0.20 m.
b NA is not available.
c IL is illite; KK is kaolinite; MI is mica; MT is montmorillonite.
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soils for which surfactants increased water retention at high poten-
tials (Lehrsch et al., 2011).

2.2. Surfactant application rates

In Study 1, both the COP and IGG surfactants were applied at IGG's
recommended rate of 9.4 L ha−1 of whole product (Table 3). Less ac-
tive ingredient (a.i.) per unit area was applied with COP than IGG due
to differences in a.i. proportion and in specific gravity. As mentioned
above, COP supplied about 60% of IGG's active ingredient. Conse-
quently, the a.i. application rate of COP was chosen to be ca. 60% of
that of IGG in both studies (Table 3). On an a.i. per unit area basis,
about five times as much surfactant was applied in Study 2 than 1.
These rate differences gained us insight into surfactant rate effects
on aggregate strength by comparing the findings of Study 2 with 1
for Latahco and Rad aggregates, the soils common to both studies.

2.3. Study 1

2.3.1. Soil collection and handling
In general, about 15 kg of each soil were collected by research

collaborators from across the continent in 2008 or 2009 from the Ap
horizon (uppermost 0.10 m in general; uppermost 0.15 or 0.20 m if
necessary) of fields in agricultural production. After being collected,
each of the field-moist soils was sealed in three, 19-L plastic buckets,
then over-night mailed or transported to the laboratory at Kimberly.
Upon arrival, each soil's gravimetric water content was measured.
The field moist soils were then stored in air-tight containers at 4 °C
until analyzed.
Table 3
Surfactant treatments, dilution factors, and application rates for Studies 1 and 2.

Surfactant treatmenta Dilution factor,
by wt.

Surfactant application rate

Whole product
(L ha−1)

Active ingredient
(kg ha−1)

Study 1
Control NA 0 0
COP 1:8.75 9.4 1.00
IGG 1:4 9.4 1.63

Study 2
Control NA 0 0
APG 1:26.31 4.17 3.35
COP 1:26.13 4.59 4.79
IGG 1:11.70 46.8 8.14

a COP was an ethylene oxide/propylene oxide block copolymer; IGG was IrrigAid
Gold®; and APG was an alkyl polyglycoside. All surfactants are described in the text
and were supplied by Aquatrols Corporation of America, Paulsboro, NJ.
2.3.2. Surfactant application
Weassumed that the surfactant solutionwouldwet the uppermost

10 mm of soil to which it was applied. The surfactant application rate,
on an active ingredient per unit mass oven-dry soil basis, was then
calculated based upon a 10-mm depth of treated field soil at a dry
bulk density (BD) of 1) 1.1 Mg m−3 for soils with b520 g kg−1 sand
or 2) 1.4 Mg m−3 for sandier soils. The appropriate volume of IGG,
then COP, was diluted with double deionized water (DDI) as needed
so that the desired rate of the surfactant's a.i. would be applied with
70 ml of its dilute solution. The DDI had a pH of 4.9 and electrical
conductivity (EC) of 2.4×10−3dS m−1. The DDI's sodium adsorption
ratio (SAR) was nil because Na+ was not detected via inductively
coupled plasma optical emission spectroscopy (ICP-OES) performed
using an Optima Model 4300 DV spectrometer (Perkin Elmer Instru-
ments, Waltham, MA). The dilute solutions' pH was 6.0 for IGG and
4.6 for COP.

Soil was first air-dried, then passed through an 8-mm sieve. An
air-dry mass of 0.70 kg of sieved soil was placed on a 0.6-m×0.6-m
piece of plastic sheeting and spread smoothly into an approximate
10-mm-thick, circular layer with a clean spatula moving horizontally.
Approximately 15 ml of the desired 70 ml of dilute surfactant solu-
tion were uniformly sprayed by hand from a spray bottle onto the
soil. The soil on the sheeting was then thoroughly mixed by repeated-
ly lifting alternate corners of the sheeting. The soil was then again
spread on the sheeting using the spatula as before. This spraying
and mixing protocol was repeated another 4 to 5 times until 70 ml
of dilute solution had been applied. Similarly, 70 ml of surfactant-
free, reverse-osmosis water (RW) was applied to the control. The RW
had a pH of 5.7, EC of 7.2×10−3dS m−1, and SAR of 2.1 (meq L−1)0.5.
Other RWproperties were given by Lehrsch and Sojka (2011). The solu-
tion volume appliedwas determined by repeatedweighing of the spray
bottle containing the surfactant solution. The soil sample was then rep-
resentatively split into four pie piece-shaped lots, one of about 250 g for
the soil aggregate tensile strength measurement and three other 150-g
lots for an ancillary water stable aggregation measurement (Lehrsch, in
press). Each of the treated soil samples and the control (still on the
sheeting) were left undisturbed for 72 h to dry at ambient temperature
(ca. 22 ° C) and relative humidity (ca. 26%). Each of the now air-dry soil
sampleswas stored in a sealed plastic bagwithout overburden pressure
at 4 ° C for no more than 150 d until analysis.

2.3.3. Tensile strength measurements
The treated soil was gently dry sieved by hand to obtain aggre-

gates with diameters from 4.0 to 6.35 mm. We studied aggregates
of a relatively narrow size class to minimize known variation in
aggregate strength with aggregate size (Seguel and Horn, 2006).
Loamy aggregates with diameters from 2 to 8 mm are often near-
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spherical in shape, important when measuring tensile strength
(Rogowski et al., 1968). Furthermore, 4- to 5-mm aggregates are
important in seedbeds (Imhoff et al., 2002). The 4- to 6.35-mm aggre-
gates were oven-dried at 105 ° C for 24 h before being analyzed.
Dexter and Kroesbergen (1985) considered the oven-dried state a
standard reproducible condition and recommended against measuring
air-dried aggregates because small differences in aggregate water con-
tent significantly affected the compressive force at failure and conse-
quently tensile strength. Immediately after removal from the drying
oven, aggregates were placed in a desiccator containing dry silica gel
to prevent any change in water content or potential, for 24 h or more.

An individual aggregate (26≤n≤37, nominally 35) from each
treatment combination was then removed from the desiccator,
weighed, then crushed. To measure tensile strength, we used a
5-mm-diameter, flat-tip probe attached to a calibrated load cell
that, when in operation, continuously outputted voltage through a
signal conditioner to a nearby computer. The load cell with its probe
was moved by a computer-controlled stepping motor that lowered
the tip at a constant rate of 0.27 mm s−1, thus applying continuous
strain to the aggregate. The maximum voltage output prior to an
aggregate's failure (i.e., the voltage inflection) was used with a cali-
bration equation to determine that aggregate's polar compressive
force at failure, F (N), calculated as:

F ¼ b g ð1Þ

where b was the load (kg) determined from a calibration relating the
load cell's conditioned voltage output to load and g was the accelera-
tion due to gravity (9.807 m s−2) (Dexter and Kroesbergen, 1985).

We also determined each aggregate's effective spherical diameter,
D (m):

D ¼ d
m
―m

� �1
3 ð2Þ

where d = the mean of the upper and lower sieve apertures (i.e.,
5.175×10−3 m), m = the mass of the individual aggregate (g),
and �m = the mean mass of the aggregate batch (g) (Dexter and
Kroesbergen, 1985). Eq. (2) adjusted d to account for differences in
the masses of individual aggregates, assuming that all aggregates
had equal density (Dexter and Kroesbergen, 1985).

Tensile strength, TS (Pa), was then calculated as:

TS ¼ a
F
D2

� �
ð3Þ

where a was a unitless proportionality constant equal to 0.576, F was
the compressive force at failure (N), and D was the aggregate's effec-
tive diameter (m) (Dexter and Kroesbergen, 1985; Watts and Dexter,
1998). The constant a was the ratio of tensile to compressive stress
in the center of the aggregate (Perfect and Kay, 1994). Its value
was based on the assumption of spherical form and perfect linearly
elastic behavior (Dexter and Kroesbergen, 1985; Watts and Dexter,
1998). Dry soil best satisfies the assumption of perfect elasticity
(Munkholm and Kay, 2002).

2.4. Study 2

2.4.1. Soil collection and handling
The Latahco and Rad silt loams (Tables 1 and 2) were collected in

2005 and 2006 and stored as described by Lehrsch et al. (2011). In
brief, the Rad soil was collected at depths of 0 to 0.2 m from a fallow
field (42° 31.08´ N, 114° 22.4´ W) southwest of Kimberly, ID, while the
Latahco was collected at the 0- to 0.15-m depth from a fallow area
(46° 42.68´ N, 117° 00.21´ W) south of Moscow, ID. After being
transported to the research laboratory at Kimberly, the field-moist
soil was stored at ambient temperature in covered metal bins.

A portion of each soil was retrieved from its metal bin and, being
still field-moist, sieved through a 10-mm screen into a 1.22-m
wide×1.52-m long×0.20-m deep steel box. Each box contained
76 mm of fine gravel underlayment and 76 mm of each soil, with
the latter packed by tamping in 3 to 4 lifts to a nominal bulk density
of 1.1 Mg m−3 (confirmed with subsequent measurements). After
the soil surface was leveled with a screed, the upslope end of each
box was elevated to position the soil surface at a 2.5% slope.

2.4.2. Surfactant application, irrigations, and soil sampling
The surfactants were applied to the packed soil in the boxes and

the soil was then irrigated as described by Lehrsch et al. (2011). In
brief, surfactant solutions were sprayed from a height of 0.36 m
onto the soil surface using a 1.52-m-long spray boom equipped
with five nozzles. By hand, we moved the boom at a calibrated rate
twice across each box to evenly distribute the surfactant to the soil
surface. The IGG's whole-product application rate was nominally
46.8 L ha−1 mixed with well water (WW) per the dilution factors
given in Table 3. The APG and COP surfactants were applied, on an
a.i. per unit area basis, in proportion to their a.i. fraction in IGG
(Table 3), also diluted with WW as necessary. The soil in each box
then had 34.8 ml of the appropriate surfactant solution sprayed
onto it. The control spray solution was surfactant-free WW, drawn
from the upper Snake River Plain aquifer in south-central Idaho. The
WW had a pH of 7.6, EC of 0.7 dS m−1, and SAR of 1.7 (meq L−1)0.5.
Other WW properties were given by Lehrsch and Sojka (2011).

The first of two irrigations was performed within 2 d of surfactant
application. A calibrated sprinkler simulator was used to irrigate the
soil in each box with surfactant-free WW at a rate of 88 mm h−1

twice, once for 0.33 h and, about 8 d later, for 0.25 h. The sprinkler
simulator applied water with a median drop diameter of 1.2 mm
and kinetic energy of 26.0 J kg−1 (Kincaid, 1996) to soils with ante-
cedent water contents of ca. 0.10 kg kg−1. Runoff, with entrained
sediment, was collected from the downslope edge of each box and
has been reported elsewhere (Lehrsch et al., 2011). After being irri-
gated, soil in the boxes was subjected to forced air drying as box
fans moved ambient warm air across soil surfaces. Since we did not
want the sampling of wet soil to affect aggregate tensile strength,
we dried the soil to a water content of ca. 0.11 kg kg−1, typically
attained about 4 d after being irrigated. At that time, soil samples
were collected by hand at depths from 0 to 10 and 10 to 20 mm
from soil in each of the four quadrants of each box, then composited
by depth. The composited samples were stored in vapor-proof poly-
ethylene bags at 7 ° C for no more than 180 d before being analyzed.
Additional soil was then returned to those portions of the soil surfaces
disturbed by sampling. About 4 d after sampling, we irrigated the
second time and thereafter collected soil samples adjacent to the
previously sampled locations as we had done after the first irrigation
for measuring tensile strength.

2.4.3. Tensile strength measurements
Each sample was gently dry sieved to obtain from 18 to 35 (usually

35) aggregates with diameters from 4 to 6.35 mm. After being oven-
dried, each aggregate's tensile strength was measured as in Study 1.

2.5. Statistical analysis

To account for the great variability in tensile strength (Blanco-
Canqui et al., 2005), we analyzed multiple aggregates (usually 35)
per sample, as is routinely done (Dexter and Kroesbergen, 1985;
Imhoff et al., 2002; Reszkowska et al., 2011). To best estimate the
mean strength for each replicate of our treatments, in accordance
with the central limit theorem the strengths measured on each
of the aggregates were arithmetically averaged (Horn and Dexter,
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1989; Johnson, 1988). The resulting values were the response vari-
ables subjected to subsequent statistical analyses.

The experimental design for Study 1was a split plot with nine soils
(Table 1) asmain plots and three surfactant treatments (COP, IGG, and
the Control, Table 3) as subplots, with three replications. The main
plots were arranged in randomized complete blocks (RCBs). In the
analysis of variance (ANOVA), the fixed effects were soils, surfactants,
and soils×surfactants. Before performing the ANOVA, the tensile
strength's error variance by treatment was examined using the rela-
tionship between its treatment means and corresponding treatment
standard deviations (Box et al., 1978; Lehrsch and Sojka, 2011). To sta-
bilize its error variance, we transformed the tensile strengths with a
common (base 10) log before continuing the analysis. We then used
a Bartlett's test and ANOVA grouping options as needed to ensure
that all treatments had homogeneous variances.

Thereafter, the PROC Mixed procedure in SAS (SAS Institute Inc.,
2009) was used to perform a mixed-model ANOVA with a signifi-
cance probability (P) of 0.05, unless otherwise noted. For significant
fixed effects, least-squares means were separated using the Tukey–
Kramer test (Kramer, 1956). In the ANOVA, a single degree-of-
freedom contrast was used to compare both surfactants, as a group,
with the control, averaged across soils. All means for Study 1 were
back-transformed into original units for presentation. We also deter-
mined correlations between selected soil properties and tensile
strength averaged across surfactant treatments by calculating Kendall's
correlation coefficient, a nonparametric measure of association be-
tween two variables (SAS Institute Inc., 2009).

In Study 2, each soil was analyzed separately with the experimen-
tal design being a split split plot with four surfactant treatments (APG,
COP, IGG, and the Control, Table 3) as main plots in RCBs, two irriga-
tions as subplots in time, two sampling depths (5 and 15 mm) as
sub-subplots in space, and four blocks. Neither the Latahco nor the
Rad tensile strength data required transformation. In each soil's
ANOVA, three single degree-of-freedom contrasts were used, one to
compare the effects of IGG with those of IGG's two components, as a
group, averaged across irrigations and sampling depths, and two to
make the same comparison at each sampling depth, averaged only
across irrigations. All other data handling and statistical protocols
were the same as for Study 1.

3. Results and discussion

3.1. Study 1

Tensile strength varied greatly from soil to soil (Fig. 1). For exam-
ple, the tensile strength was more than 18-fold greater for the Bolfar
Fig. 1. Surfactant treatment effects on soil aggregate tensile strength measured in Study 1. W
to the Tukey–Kramer test at P=0.05. Letters are not displayed if means did not differ. Mea
loam than the Adkins loamy sand, when averaged across the three
surfactant treatments. The five-fold greater clay content of the Bolfar
than Adkins soil (Table 2) likely led to more clay bridging within, and
thus greater strength of, the Bolfar aggregates (Kay and Dexter, 1992;
Kemper et al., 1987). Within a soil, the overlapping 95% confidence
intervals of the surfactants with the control revealed no outstanding
surfactant effects on the tensile strength of any one of the nine soils
(Fig. 1). Moreover, the effects of IGG and COP on each soil's tensile
strength were statistically similar even though the properties of the
two surfactants differed, as noted above.

With the exception of the coarse-textured Adkins, Chino, and
Faceville soils, however, tensile strength tended to be greater for
surfactant-treated than control aggregates of the remaining six soils
(Fig. 1). Indeed, a pre-planned single degree-of-freedom comparison
revealed (at P=0.099) that the tensile strength of surfactant-
treated aggregates, 164 kPa, was 7% greater than the 153 kPa of
untreated aggregates, when all nine soils were considered a group.
This strength increase in surfactant-treated soils may be a conse-
quence of changes in water film thickness, diffusion, precipitation,
and colloid movement. Surfactants applied to wettable soils increase
water retention, likely by thickening water films, though confirmed
only at high water potentials (Lehrsch et al., 2011). When applied in
the present study, surfactants likely decreased the liquid–solid con-
tact angle, eased water entry into pores (Letey, 2001), and thickened
water films surrounding particles within aggregates. Slightly soluble
inorganic bonding agents such as silica, Ca2+ (from the dissolution
of CaCO3 or CaSO4) or, in soils frommore humid locales, iron and alu-
minumoxides then diffusedmore easily and quickly from particle sur-
faces into the thicker water films deficient in those chemical agents
covering the wettable soil surfaces (Tisdale and Nelson, 1975). Subse-
quent drying likely concentrated and precipitated the bonding agents
at interparticle contact points (Kemper et al., 1987; Lehrsch et al.,
1991, 1993) and, as drying continued, colloidal clay and clay domains
were drawn to, then reoriented at those points (Kay and Dexter, 1992;
Kemper et al., 1987), thus strengthening the surfactant-treated aggre-
gates more than the control. Soil aggregates dried in an oven prior to
measuring tensile strength attain water contents far less than any
the aggregates might experience in the field. These water content dif-
ferences make it difficult to predict a soil's response in the field based
upon measured tensile strength responses of oven-dry aggregates
(Munkholm and Kay, 2002). Nonetheless, drying in either an oven
or the field would cause tensile strength to increase as soil water
contents decrease, in general. Where the dilute solution of COP was
applied, its relatively low pH of 4.6 likely led to increases in soil solu-
tion Ca2+ concentrations as Ca2+ ions were displaced from the
exchange complex or were released from the dissolution of lime,
ithin a soil, means (n=3) without a common letter are significantly different according
ns are shown with 95% confidence intervals.
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gypsum, or both. These surfactant‐mediated increases in soil strength
may help explain decreases in sediment loss from treated compared to
untreated soil (Osborn et al., 1964). Management practices that in-
crease tensile strength when a soil is dry generally increase strength
when that soil wets, though exceptions occur at times (Munkholm
and Kay, 2002). Clay migration and bridging appear particularly
important since, compared to controls, surfactants tended to increase
tensile strength the most in the Aksarben, Bolfar, Latahco, and Oxford
soils (Fig. 1), the four soils with clay contents ≥260 g kg−1 (Table 2).
The fact that the Adkins, Chino, and Faceville soils were the three
sandiest soils that we studied (Table 2) suggests that surfactants
may be less effective in increasing the tensile strength of coarse-
than fine-textured soils. Compared to silty or clayey soils, sandy soils
contain much larger primary particles and consequently have fewer
interparticle contact points that could be strengthened when treated
with surfactants.

Two opposing mechanisms may be affecting aggregate tensile
strength in surfactant-treated soil. As noted above, surfactants in-
crease water retention, at least at high potentials, likely by increasing
water film thicknesses. All other factors being equal, greater water
contents would decrease tensile strength but at the same time facili-
tate cementing agent movement to intra-aggregate contact points. If
the treated soil were later to dry, those agents would precipitate or
flocculate, likely increasing tensile strength.

A combination of soil properties may have acted in concert to
affect aggregate tensile strength. Clay, organic matter, and polyvalent
cations from the exchange complex may have formed clay-humic
complexes that strengthened aggregates (Edwards and Bremner,
1967) and may have affected tensile strength responses to surfactants
as well.

Since the soil×surfactant interaction was not significant (P=
0.982), the tensile strength for each soil was averaged across surfac-
tant treatments, then correlated with selected soil properties given
in Table 2. For the nine soils we studied, tensile strength tended to
be correlated with clay, sand, and organic C but not with total C,
CaCO3 equivalent, or contact angle (Table 4). The fact that tensile
strength was positively correlated with clay, as found by Guérif
(1990), Barzegar et al. (1995), and others, was likely due to clay
bridging between intra-aggregate particles, as noted above. The neg-
ative correlation between tensile strength and sand [Kendall correla-
tion coefficient (rK)=−0.50, P=0.061] reflected the commonly
observed inverse relationship between sand content and aggregation.
This inverse relationship also reflects the lack of cohesion between
sand grains within aggregates. This negative correlation coefficient
supports the claim above that the surfactants least affected the tensile
strength of coarse-textured soils. The positive correlation between
tensile strength and organic C (rK=+0.44, P=0.095) accords with
the oft-noted increase in aggregate stability with soil organic C
(Tisdall and Oades, 1982). Dexter et al. (2008) recommended that
the clay-to-organic C ratio, as a measure of complexed organic C
(organic C bound to clay), be evaluated when predicting soil physical
Table 4
Correlations between selected soil properties and aggregate tensile strength, averaged
across surfactant treatments.

Property Kendall correlation coefficienta

Tensile
strength

Contact
angle

CaCO3

equiv.
Total
carbon

Organic
carbon

Sand

Clay +0.54* +0.11 +0.03 +0.03 +0.25 −0.54*
Sand −0.50 −0.59* +0.11 −0.39 −0.50
Organic carbon +0.44 +0.42 +0.06 +0.78**
Total carbon +0.22 +0.31 +0.28
CaCO3 equiv. −0.06 −0.37
Contact angle +0.20

* and ** Significant at P=0.05 and 0.01, respectively.
a n=9 in every case.
properties. For the nine soils we studied, however, tensile strength
was not correlated with the clay-to-organic C ratio (rK=+0.17, P=
0.532).

Of note is the significant correlation between contact angle and
sand content (rK=−0.59, P=0.028) shown in Table 4. Water repel-
lent soils commonly exhibit contact angles≥50° (Shirtcliffe et al.,
2006) and are most often coarse- rather than fine-textured (Doerr
et al., 2000). These established relationships suggest that sand con-
tent should be directly proportional to contact angle for water repel-
lent soils. However, for wettable soils as ours were (Table 2), the
opposite appears true since contact angles decreased as sand content
increased (Table 4). Differences in vegetation, its decomposition, or in
the deposition of the resulting constituents account, at least in part, for
these contact angle differences between wettable and non-wettable,
coarse-textured soils (Doerr et al., 2000; Mataix-Solera and Doerr,
2004).

3.2. Study 2

As noted in Study 1, surfactant effects on tensile strength differed
from soil to soil (Fig. 2). Surfactants altered tensile strength for the
Latahco silt loam but not for the Rad silt loam, when strengths were
averaged across irrigations and sampling depths. The surfactant
means for the Latahco differed from one another in one case despite
having overlapping confidence intervals (CIs). The CIs were wide be-
cause they included the variability of the random factors in the statis-
tical model. Compared to the Rad, the Latahco had 86% more clay and
nearly 100% more organic C (Table 2), both of which were positively
correlated with tensile strength (Table 4) and are commonly associat-
ed with better soil structure and more stable aggregates (Kay and
Dexter, 1992; Tisdall and Oades, 1982). While not water repellent
(Lehrsch et al., 2011), the Latahco did have a much greater contact
angle than the Rad (Table 2), suggesting that surfactants may alter
the wetting and water relations relatively more for soils similar to
the Latahco than the Rad.

For the Latahco silt loam, tensile strength was 18% less (Pb0.009)
for aggregates treated with IGG than COP (Fig. 2). As noted above,
IGG was a blend of APG and COP. Thus, the lower tensile strength
of IGG compared to COP must be due in large measure to the APG
portion of IGG's constitution. Interestingly, the tensile strength of
IGG-treated aggregates was not intermediate between those of APG-
Fig. 2. Surfactant treatment effects on soil aggregate tensile strength for Latahco and
Rad silt loams measured in Study 2. Data have been averaged across irrigations and
sampling depths (interactions not significantly different, NS, at P≥0.120). Within a
soil, means (n=16) without a common letter are significantly different according to
the Tukey–Kramer test at P=0.05. Letters are not displayed if means did not differ.
Means are shown with 95% confidence intervals.



Table 5
Depth effects on the tensile strength of Latahco and Rad silt loams in Study 2. Data for
each soil have been averaged across surfactant treatments and irrigations (interactions
not significantly different, NS, at P≥0.121).

Depth (mm) Tensile strength (kPa)

Latahco Rad

5 210 ya 159 y
15 303 x 202 x

a Within a column, means (n=32) not followed by a common letter are significantly
different according to the Tukey-Kramer test at P=0.05.
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and COP-treated aggregates but rather less, revealing an antagonistic
effect of the blending of APG and COP upon aggregate strength (Fig. 2).
Indeed, a single degree-of-freedom contrast confirmed that the
tensile strength of Latahco aggregates treated with APG and COP (as a
group), 267 kPa, was 15% greater (Pb0.008) than that of IGG-treated
aggregates, averaged across irrigations and sampling depths. It should
be noted that the a.i. application rates differed among the surfactants
(Table 3). This antagonistic response occurred despite the facts that 1)
COP provided proportionally more a.i. than APG to IGG (Table 3), and
2) COP tended to be more effective than APG in strengthening Latahco
aggregates (Fig. 2). These differences among surfactants may be due
to differences in the conformation or rearrangement of surfactant (or
amphiphilic) molecules on particle surfaces upon oven-drying (Doerr
et al., 2000; Lehrsch and Sojka, 2011).

Surfactant rate effects on aggregate strength were minimal, in
general. Responses of Latahco and Rad aggregates to the nearly
five-fold greater application rates in Study 2 (Fig. 2) than 1 (Fig. 1)
were similar in most, but not all respects. For the Latahco, the tensile
strength of aggregates treated with either IGG or COP was statistically
similar to that of untreated aggregates. The Latahco's strength was
greater for COP- than IGG-treated aggregates, though significantly
so only in Study 2 (Fig. 2). For Rad aggregates, in contrast, tensile
strength differed little among surfactant treatments in either study.
The greater application rate, however, nearly doubled Rad's tensile
strength from 97 kPa in Study 1 to 180 kPa in Study 2, when averaged
across surfactant treatments. This doubling suggests that increasing
surfactant application rates may increase the tensile strength of struc-
turally unstable silt loams similar to the Rad (Lehrsch et al., 1991).
The greater application rates in Study 2 vs. 1 may be enhancing the
movement in Rad soil of cementing agents, particularly Ca2+ that
upon drying can precipitate as CaCO3 to strengthen intra-aggregate
bonds (Dexter, 1988). Additional research should be conducted,
however, to confirm, at least for Rad silt loam, that tensile strength
increases with surfactant application rates. Studies 1 and 2 differed,
however, in more than surfactant application rates. For example, in
Study 1 air-dry soil was sieved, then treated with surfactants while
in Study 2 field-moist soil was sieved, treated with surfactants, then
irrigated. Thus, differences in pretreatment, surfactant application
rates, irrigation, or any combination of the three, may have been
responsible for the differences in tensile strength from Study 1 to 2.

For each soil in Study 2, single degree-of-freedom contrasts were
used to compare, at each sampling depth, tensile strength of aggre-
gates treated with IGG to a group treated with its two components,
APG and COP. Averaged across irrigations, the strength of Latahco ag-
gregates at the 5-mm depth treated with IGG, 173 kPa, was one-fifth
less (significant at P=0.017) than the 218-kPa average of aggregates
treated with its components (data not shown). For Latahco at the
15-mm depth, however, IGG's 290 kPa did not differ from the compo-
nents' average 316 kPa. For the Latahco soil, aggregates treated with
IGG tended to be the weakest among all surfactant treatments
(Fig. 2). In contrast with Latahco, Rad aggregate strength was similar
whether treated with IGG or IGG's component group, at each depth
(data not shown).

Each soil's tensile strength was less at the 5- than 15-mm depth
(Table 5). Compared to the 15-mm depth, tensile strength at the
5-mm depth was 31% less for the Latahco and 21% less for the Rad
(both significant at Pb0.001), when averaged across surfactant treat-
ments and irrigations. Kay et al. (1994) attributed an increase in
tensile strength with depth to more moderate water content changes
(that is, wetting and drying) at depth than at the soil surface. In addi-
tion to smaller water content changes at depth than nearer the sur-
face, two other mechanisms may have contributed to an increase in
strength with depth in Study 2. First, surfactant molecules adhering
to fine particulate organic matter or soil colloids may have been
leached to lower depths by surfactant-free irrigation water (Lehrsch
and Sojka, 2011; Miller et al., 1975). Recalling that aggregates from
Study 1 tended to be stronger where surfactant-treated, this leaching
could account for weaker aggregates near the surface and stronger
ones below. This process could explain the strength increase with
depth but only where surfactants were applied. A second mechanism
may have been a consequence of irrigation water droplet impact. In
Study 2, the average 26% smaller tensile strength near the surface
compared to the subsurface (Table 5) could have been due to sprinkler
droplet kinetic energy fracturing a portion of the intra-aggregate,
particle-to-particle bonds, thus weakening near-surface aggregates
while having little or no effect on aggregates deeper in the profile
(Lehrsch and Kincaid, 2006).

4. Conclusions

1) Surfactants increased tensile strength by 7%, compared to the
control, when the responses of nine wettable agricultural soils
were averaged.

2) When soils were considered individually, however, tensile strength
was seldom affected by surfactants. Moreover, surfactant effects on
tensile strength were not consistent from one soil to another.

3) Tensile strength varied greatly from soil to soil, tending to be greater
for soils higher in clay and organic C but less for soils higher in sand,
regardless of surfactant treatment.

4) Aggregate tensile strengthwas 26% less at the 5- than 15-mmdepth,
likely a consequence of surface and near-surface, intra-aggregate
bonds being fractured by water drop kinetic energy, leaching of
applied surfactant, or both.

5) Tensile strength varied more by soil series and depth than by
surfactants.
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