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The use of multiple calibration sets in partial least squares (PLS)

regression was proposed to improve the quantitative determination of

NH3 over wide concentration ranges from open-path Fourier transform

infrared (OP/FT-IR) spectra. The spectra were measured near animal

farms, where the path-integrated concentration of NH3 can fluctuate from

nearly zero to as high as approximately 1000 ppm-m. PLS regression with

a single calibration set did not cover such a large concentration range

effectively, and the quantitative accuracy was degraded due to the

nonlinear relationship between concentration and absorbance for spectra

measured at low resolution (1 cm�1 and poorer.) In PLS regression with

multiple calibration sets, each calibration set covers a part of the entire

concentration range, which significantly decreases the serious nonlinearity

problem in PLS regression occurring when only a single calibration set is

used. The relative error was reduced from approximately 6% to below

2%, and the best results were obtained with four calibration sets, each

covering one quarter of the entire concentration range. It was also found

that it was possible to build the multiple calibration sets easily and

efficiently without extra measurements.

Index Headings: Open-path Fourier transform infrared spectrometry; OP/

FT-IR spectrometry; Partial least squares; PLS regression; Quantitative

accuracy; Calibration.

INTRODUCTION

Open-path Fourier transform infrared (OP/FT-IR) spectrom-
etry is an effective technique to measure the concentration of
greenhouse gases and other molecules in the atmosphere.1

Atmospheric monitoring of the gaseous emissions from various
sources, such as industrial plants, agricultural operations,
engines of motor vehicles or aircraft, etc., has also been
reported by this technique.2–4 The instrumentation for OP/FT-
IR spectrometry is rugged and relatively easy to operate in the
field.5–9 However, data analysis is rather difficult because the
spectra are complicated by the dominant and omnipresent
absorption bands of atmospheric water vapor and CO2, the

concentration and temperature of which change constantly, and
by the deviations from Beer’s law for narrow lines in the
vibration-rotation spectra of small molecules measured at low
or medium resolution.10 To reduce the effects of these
uncontrollable factors, we have shown that the application of
partial least squares (PLS) regression is preferable to other
chemometric methods.11,12 However, when the concentration
of an analyte varies over a very wide range, as it does around
animal farms, for example, even PLS regression leaves room
for improvement.

In PLS regression, the calibration spectra must be measured
under conditions for which all sources of variance in the
spectra to be analyzed are encompassed even though not all the
variables need be quantified. If the analyte occurs at very high
concentration (such as NH3 in the atmosphere around animal
farms), the range of path-integrated concentrations for the
calibration set should exceed the highest value that will be
encountered in the field. Such a large concentration range may
result in significant nonlinearity between measured absorbance
and concentration. Although the effect of nonlinearity can in
principle be managed by including more factors in the PLS
model, the number of calibration spectra must then be
increased, which can present a problem in practice for OP/
FT-IR measurements.

Several attempts to ameliorate the effect of nonlinearity over
a wide concentration range have been reported. In a study of
classical least squares (CLS) calibration for methane, Ropertz
separated spectra taken over a large concentration range (20 to
10000 ppm-m) into two parts and built a linear and a second-
order model, with the latter giving a lower root mean square
error of prediction (RMSEP).13 Bak and Larsen used linearized
CO spectra as input to the PLS regression; in this case the
calibration model was found to have good predictive ability
throughout the entire concentration range from 15 to 32 640
ppm-m.14 Alcala et al. investigated the effect of the
concentration range in the calibration model on the prediction
of low concentrations of pharmaceutical compounds.15 Even
though the bands they measured in the spectra were broader
than those in most OP/FT-IR measurements, they concluded
that the selection of wide concentration ranges was not
recommended for the determination of analytes at minor
levels, even when the concentration of the analyte is within the
range of the model.

In our investigations of the atmosphere around animal farms,
we found that the path-integrated concentration of NH3 can
fluctuate from nearly zero to as high as approximately 1000
ppm-m.16 For the highest path-integrated concentrations, the
true peak absorbance (i.e., the peak absorbance measured at
infinitely high resolution) exceeds 1.0 and linear Beer’s law
behavior is not observed when the spectrum is measured with a
resolution parameter greater than unity. Highly nonlinear
behavior would be expected with boxcar truncation or
triangular apodization,17 but even with the Norton–Beer
apodization functions, some nonlinearity is predicted.18 In
order to be able to process OP/FT-IR spectra measured
adjacent to a dairy production facility19 when the NH3

concentration covers a wide range, we used a calibration set
for the PLS regression of NH3 for which the NH3 concentration
ranged from 0 to 1400 ppm-m. Use of a calibration set with this
wide range of concentration led to good prediction perfor-
mance for spectra of either low, medium, or high concentration,
but not throughout the entire range. Better results were
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obtained when more than one calibration set was used, with
each set covering a part of the entire concentration range.

In this paper, we report the result of dividing the data set
containing a large concentration range into smaller sets and
building a calibration set for each smaller range. The OP/FT-IR
spectrum to be analyzed is first subjected to a PLS regression
with a single calibration set that covers the entire concentration
range and the approximate concentration of NH3 is obtained.
Then, one of the multiple calibration sets is selected so that its
concentration range includes the approximate concentration
and another PLS regression is performed on the same spectrum
to yield a ‘‘refined’’ concentration. Results indicated significant
improvement in the accuracy of the predicted concentrations of
NH3. It was also found that it was possible to build the multiple
calibration sets easily and efficiently from quantitatively
accurate reference spectra without actual experiments.

MEASUREMENT AND DATA PROCESSING

Experimental. OP/FT-IR spectra were measured in a
cooperative project for monitoring gaseous emissions around
animal farms in southern Idaho with the Northwest Irrigation
and Soil Research Laboratory of the United States Department
of Agriculture’s Agricultural Research Service. The OP/FT-IR
spectrometer was manufactured by MDA Corp. (Atlanta, GA)
and incorporated a Bomem Michelson 100 interferometer, a
31.5 cm telescope, a cube-corner array retro-reflector, and a
Sterling engine-cooled mercury cadmium telluride (MCT)
detector. Interferograms were measured with a maximum
optical path difference of 1 cm (nominal resolution of 1 cm�1),
then corrected for the nonlinear response of the MCT
detector.20 All OP/FT-IR spectra were computed from the
interferograms with a zero-filling factor of 8 and medium
Norton–Beer (MNB) apodization.

Spectral data in the region from 1250 to 750 cm�1 were used
for the PLS regression to predict the concentration of NH3. All
manipulation of spectra and data processing were done using
MATLAB 7.0.1 (The Math-Works Inc., Natick, MA) on the
Windows Vista operating system.

Calibration and Validation Sets. The calibration set in PLS
regression was composed of 54 spectra with different path-
integrated concentrations of NH3. For measurements made in
open air, it is impossible to control the release of NH3 such that
the concentration along the entire path length (which is usually
between 100 and 200 m) is uniform, which is why path-
integrated concentrations (in ppm-m) are measured rather than
simply concentration. These spectra were synthesized by first
acquiring 54 single-beam background OP/FT-IR spectra in
pristine air over a period of several months. These spectra were
measured with a variety of path lengths (from 50 to 500 m),
temperatures (10 8C , T , 35 8C), and relative humidities to
ensure that all sources of variance of the background were
encompassed. Each spectrum was ratioed against a single-beam
background spectrum measured with the retro-reflector within
1 m of the telescope and converted to absorbance. Then, 54
reference spectra of NH3 with different concentrations were
prepared in the way described by us previously.21,22 A high-
resolution (0.125 cm�1) reference absorbance spectrum of
ammonia was first multiplied by a known, randomly selected
scaling factor and then converted to transmittance. The fast
Fourier transform (FFT) of the transmittance spectrum was
then calculated and the resulting array was truncated to an
optical path difference of 1 cm and apodized with the Norton–

Beer medium function to make the resolution and instrument
line-shape function equal to that of the background spectrum.
The inverse FFT of this array was then calculated to give the
transmittance spectrum under the same conditions as the
background spectrum and converted to absorbance. Each
ammonia spectrum calculated in this way was added to an
absorbance spectrum of pristine air. These composite spectra
reflect the full range of conditions under which the OP/FT-IR
spectra were measured in the field.

Several sets of OP/FT-IR spectra were acquired in the field
under the same conditions as the spectra in the calibration set,
but with different concentrations of NH3. Because it is
impossible to control the release of NH3 in open air, we chose
a number of OP/FT-IR spectra that had been measured around
animal farms with different levels of NH3 and calculated the
corresponding concentrations. The concentration could not be
calculated by directly applying Beer’s law, because the high
absorbance of NH3 results in significant nonlinearity between
absorbance and concentration. Instead, we used an iterative
procedure to estimate the concentrations accurately. This
procedure is followed because high-resolution spectra obey
Beer’s law over a wide concentration range, but this is not the
case for low-resolution spectra.21 The high-resolution reference
spectrum of ammonia (in absorbance) was first multiplied by a
tentative scaling factor and deresolved using the same
procedure used for the calibration spectra. The deresolved
spectrum was subtracted from the measured validation
spectrum to give a residual spectrum. The above procedure
was repeated with the scaling factor varied iteratively until the
residual spectrum showed no absorption line due to NH3

between 970 cm�1 and 960 cm�1 (in which the strongest line in
the ammonia spectrum is located). The concentration of NH3

was determined from the final scaling factor. With this
procedure, a validation set of 63 spectra that were completely
independent of the calibration spectra was obtained that
covered a concentration of NH3 from 33 to 1400 ppm-m. We
checked the relationship between the concentrations and the
peak absorbance at 967 cm�1, at which the most intense
absorption of NH3 occurs, and found significant deviation from
Beer’s law, as shown in Fig. 1. It is also noteworthy that in the
case of very high absorbance of NH3, the IR beam reaching the
detector near the wavenumber of maximum absorption is so
weak that the noise level near the peak of the absorption band
can be very high and estimates of the concentration of NH3

may be affected.

RESULTS AND DISCUSSION

In PLS regression with a single calibration set (subsequently
referred to as SCS) the concentration range of NH3 was set
from 0 to 1400 ppm-m. For PLS with multiple calibration sets
the large concentration range was divided into N segments
evenly, and for each segment an independent calibration set
was built. Those N calibration sets compose the multiple
calibration sets (subsequently referred to as MCS-N). For
MCS-2, for example, there are two calibration sets, one
covering the concentration range from 0 to 700 ppm-m, and the
other covering 700 to 1400 ppm-m. For the results described in
this paper, we investigated the PLS regressions with MCS-2
through MCS-12. So for each of the 63 validation spectra, there
are twelve predictions for the concentration of NH3.

Partial Least Squares Regressions with SCS and MCS-
N. To evaluate the quantitative performance of the twelve PLS
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regressions with different number of calibration sets, the mean
absolute percentage error (MAPE) was calculated as shown in
Eq. 1:

MAPE ¼ 1

n

Xn

i¼1

pi � ti
ti

����

����3 100 ð1Þ

where n is the number of validation samples; pi and ti denote
the two calculated concentrations of NH3 from the ith
validation sample by PLS and the iterative procedure described
above, respectively.

The MAPE values were plotted against the number of
multiple calibration sets, N, in Fig. 2. It can be seen that the
PLS regression with SCS led to a mean absolute percentage
error of about 6%. However, the error drops significantly to
about 2% with only two calibration sets (MCS-2), as shown in
the plot. The relative error continues to decrease with the
number of calibration sets, and after MCS-4, tends to be stable,
at about 1.5%.

The results revealed a clear improvement when using
multiple calibration sets in the PLS regression because this
strategy effectively reduces the effect of nonlinearity between
measured absorbance and concentration. The single calibration
set covers the large concentration range from 0 to 1400 ppm-m,
and the 54 spectra in the SCS might be inadequate to reduce the
nonlinearity considerably. But in MCS-N, each calibration set
covers only a small range with the length being 1400/N ppm-
m. Nonlinearity over each small concentration range is much
less serious than over the large range that was covered by the
SCS, so the quantitative accuracy is improved.

We found that the number of factors in the PLS regression
with multiple calibration sets varies. For example, with MCS-6,
for the six PLS models that cover the concentration ranges of
0–233, 234–467, 468–700, 701–933, 934-1167, and 1168–
1400 ppm-m, the numbers of factors were found to be 10, 10,
7, 6, 5, and 4, respectively. The reason for the observed
variation is that when the concentration of NH3 in the
calibration set is low, besides the spectral information due to
NH3, absorption of water vapor and the effect of the non-zero

baseline make significant contributions to the PLS model,
which results in the need for extra factors. When the
concentration of NH3 in the calibration set was high, these
other factors became less significant, and the absorption lines
of NH3 account for the major source of variance for the PLS
model, so fewer factors are needed.

The downside of PLS regression with multiple calibration
sets is computational complexity. More than one PLS model
needs be built independently, and for each spectrum, two PLS
regressions are carried out to yield the concentration. However,
this procedure has been automated and the regression for each
short range is short enough that the additional computational
complexity does not present a problem.

Optimized Partial Least Squares Regression with
Multiple Calibration Sets. As noted above, to select the
optimal MCS model with respect to the validation set, we used
the criterion of mean absolute percentage error (MAPE).
Among the twelve PLS regressions, the minimum value of
MAPE was reached at MCS-7; however, MCS-4 and MCS-8
also gave very low MAPE values, as shown in Fig. 2. For a
rigorous comparison, we inspected the results of all 63
validation spectra. Figure 3 shows the relative errors of the
concentrations predicted by the PLS regressions with MCS-1,
MCS-2, MCS-4, MCS-7, and MCS-8.

Figure 3 also shows details about the results of the PLS
regressions with SCS and MCS-N. PLS regression with SCS
performed well in the range from 200 to 600 ppm-m, where the
measured absorbance is approximately proportional to concen-
tration, but the errors increased when the concentration of NH3

is less than 200 ppm-m (presumably because the signal-to-
noise ratio is not high enough) or greater than 700 ppm-m
(where the measured absorbance of the stronger NH3 lines is no
longer proportional to concentration). As expected from Fig. 3,
the results for the PLS regression with MCS-2 were greatly
improved over MCS-1 when NH3 was present at high
concentration, which helped explain the significant drop of
MAPE from MCS-1 to MCS-2 in Fig. 2.

For further comparison, we performed paired t-tests at 95%
confidence to the concentrations predicted by different PLS

FIG. 1. The relationship between the concentrations and the peak absorbance of NH3 for the validation spectra. The dashed line indicates the linear relationship
when Beer’s law is strictly obeyed.
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regressions. In this case, the critical value t0.05,62 is 2.00. The t
value between MCS-2 and MCS-3 was calculated to be 1.25,
so there is no statistically significant difference between the
concentrations predicted by PLS with the two models.
However, the t value calculated between MCS-2 and MCS-4,
or MCS-3 and MCS-4, is greater than the critical value.
Therefore, with a lower MAPE value, MCS-4 is a better model
than MCS-2 or MCS-3. The lowest MAPE value is with MCS-
7, 1.32, only slightly lower than that of MCS-4, 1.36. The
paired t-test between MCS-4 and MCS-7 reported a t value of
0.98, smaller than the critical value. Therefore, there is no
statistically significant difference between the concentrations
predicted by the PLS regressions with MCS-4 and MCS-7. In
other words, the PLS regression with MCS-7 is not statistically
better than that with MCS-4, even though the MAPE value is
slightly smaller. In conclusion, the optimal model can be MCS-

4 or MCS-7. If the computational complexity should be taken
into consideration, MCS-4 is the better choice.

CONCLUSION

It was found that PLS regression with multiple calibration
sets is more flexible and accurate than using a single calibration
set to process the spectra measured around animal farms, where
the concentration of NH3 varies significantly from nearly zero
to approximately 1000 ppm-m. The relative error was reduced
from approximately 6% to below 2%, and the best results were
obtained with four calibration sets.
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