
1

Coagulants such as alum [Al
2
(SO

4
)

3
•14H

2
O], FeCl

3
, or 

Fe
2
(SO

4
)

3
 are commonly used to remove particulate and 

dissolved constituents from water supplies in the production 
of drinking water. Th e resulting waste product, called water-
treatment residuals (WTR), contains precipitated Al and Fe 
oxyhydroxides, resulting in a strong affi  nity for anionic species. 
Recent research has focused on using WTR as cost-eff ective 
materials to reduce soluble phosphorus (P) in soils, runoff , and 
land-applied organic wastes (manures and biosolids). Studies 
show P adsorption by WTR to be fast and nearly irreversible, 
suggesting long-term stable immobilization of WTR-bound P. 
Because excessive WTR application can induce P defi ciency in 
crops, eff ective application rates and methods remain an area 
of intense research. Removal of other potential environmental 
contaminants [ClO

4
−, Se(+IV and +VI), As(+III and +V), and 

Hg] by WTR has been documented, suggesting potential 
use of WTR in environmental remediation. Although the 
creation of Al plant toxicity and enhanced Al leaching are 
concerns expressed by researchers, these eff ects are minimal 
at circumneutral soil pH conditions. Radioactivity, trace 
element levels, and enhanced Mn leaching have also been cited 
as potential problems in WTR usage as a soil supplement. 
However, these issues can be managed so as not to limit the 
benefi cial use of WTR in controlling off -site P losses to sensitive 
water bodies or reducing soil-extractable P concentrations.
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Water treatment processes that are used to produce safe 

drinking water generate a wide variety of residual products 

depending on the untreated water source, chemicals used for puri-

fi cation, and types of unit operations used. In the conventional 

coagulation-fi ltration treatment process, suspended solids and 

natural organic matter are removed from the raw water supply by 

the addition of aluminum and iron salts as coagulants, resulting 

in the production of water treatment residuals (WTR) (National 

Drinking Water Clearinghouse, 1998). In addition to the chemi-

cal coagulant used, WTR also carry the mineral and elemental 

signature of the source water. Based on the fi nal WTR properties, 

the material may be used as a soil amendment or soil substitute; 

however, the material typically has a strong affi  nity for anionic 

species. Th us, when used as a soil amendment, soil conditions, 

plant growth and nutrient uptake (with regard to at least Al or 

Fe), and anionic species should be closely monitored.

Since the fi rst comprehensive study of WTR land applica-

tion (Elliott et al., 1990), research has signifi cantly advanced our 

understanding of the nature, environmental behavior, and poten-

tial usefulness of WTR. Th erefore, the objectives of this review are 

to (i) present current WTR characteristics with regard to elemen-

tal concentrations and macro- and microscopic properties; (ii) 

describe the P sorption phenomenon at bench- to fi eld-scale; (iii) 

identify the potential of WTR to remove other anionic contami-

nants from water sources; (iv) show how WTR aff ect microfauna, 

insects, and animals; (v) review the negative and benefi cial envi-

ronmental eff ects of WTR soil usage in terms of metals; and (vi) 

identify how radioactivity may accumulate in WTR.

Water Treatment Residual Characterization
Major components of WTR are soil separates, organic materi-

als, and Al and Fe hydrous metal (hydr)oxides, depending on the 

metal salt used for coagulation. Alum [Al
2
(SO

4
)

3
×14H

2
O] is the 

most commonly used coagulant in the United States and Canada 

(Elliott et al., 1990); the iron salts FeCl
3
 and Fe

2
(SO

4
)

3
 are also 

used. Average Al- and Fe-based WTR component concentrations, 

based on scientifi c results from 2005 through 2008, as compared 

with compiled American Society of Civil Engineers et al. (1996) 

values, are presented in Table 1. In general, WTR macro-element 
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(e.g., N, P, Al, and Fe) concentrations were comparable to 

those presented by ASCE et al. (1996), whereas trace metal 

(e.g., Zn, Pb, Cr, Cd, and Mo) concentrations appear lower in 

2005–2008 WTR than in 1996. Trace metal reductions were 

likely a result of the United States National Pollutant Discharge 

Elimination System program (USNPDES).

Water treatment residuals tend to be amorphous in nature. 

For example, as shown in Eq. [1], when alum is added to water 

it reacts with bicarbonate to form amorphous Al(OH)
3
(s):

Al
2
(SO

4
)

3
•14H

2
O + 3Ca(HCO

3
)

2 
 

→ 2Al(OH)
3(s)

 + 3CaSO
4
 + 6CO

2
 + 14H

2
O [1]

Similar reactions occur with Fe salts used during water treat-

ment. Ippolito (2001) studied Al-WTR using X-ray diff raction 

(XRD) analysis but did not observe the presence of crystalline 

Al mineral phases (Fig. 1). Ippolito et al. (2009b) also used 

XRD analysis, verifying quartz, feldspar, calcite, illite/smectite, 

and kaolinite, but no crystalline Al(OH)
3
 phase in Al-WTR, 

suggesting that an amorphous Al form was present. Amorphous 

oxide phases are assumed to be extracted with acidifi ed ammo-

nium oxalate (Bertsch and Bloom, 1996). Th us, the quantity 

of oxalate-extractable Al and Fe concentrations in Al- and 

Fe-WTR, respectively (Table 1), as compared with total Al and 

Fe, also refl ect the amorphous nature of WTR.

Water treatment residuals also have been shown, via scan-

ning electron microscopy (SEM), to be of various shapes 

and sizes (Makris et al., 2004) and are highly porous (Fig. 2) 

(Ippolito et al., 2003; Babatunde et al., 2008). Using SEM, 

Yang et al. (2006) compared dewatered Al-WTR to pure 

Table 1. Physicochemical properties of aluminum- and iron-based water treatment residuals, 2005–2008, as compared with ASCE et al. (1996). 

Parameter Al-WTR† Fe-WTR‡ 1996 WTR§

pH 6.5 ± 0.3¶ 7.0 ± 1.3 7.0 to 8.8

EC, dS m−1 1.6 ± 0.9 0.2 ± 0.0 0.6 ± 0.5

———————————————————————— % ————————————————————————

Sand 69 ± 8 85 ± 2 nd

Silt 17 ± 5 14 ± 2 nd

Clay 14 ± 3 1.0 ± 0.3 nd

—————————————————————— mg kg−1 ——————————————————————

Total N 4,065 ± 740 10,000 4950 ± 2560

NH
4
–N 22 ± 14 nd# 160 ± 160

NO
3
–N 298 ± 207 nd 3 ± 3

Soluble reactive P 23 ± 6 nd nd

Olsen P 28 ± 4 nd nd

Oxalate-extractable P 2,320 ± 451 610 nd

Oxalate-extractable Al 65,820 ± 9,030 927 ± 498 nd

Oxalate-extractable Fe 13,930 ± 7,695 109,300 ± 29,780 nd

Total P 2,157 ± 361 710 2,260 ± 2,480

Total Al 118700 ± 24260 61,390 ± 35,920 60,100 ± 52,100

Total Fe 37,000 ± 19,740 220,900 ± 32,200 52,750 ± 63,640

Total Ca 10,360 ± 4,299 nd 20,820 ± 33,110

Total Mg) 2,407 ± 572 nd nd

Total Na 355 ± 142 nd nd

Total K 3,547 ± 582 nd 2,250 ± 3,170

Total S 6,763 ± 2,955 nd nd

Total Mn 2,998 ± 1,122 1,088 ± 178 385 ± 398

Total Zn 98 ± 31 36 ± 4 1,050 ± 3,040

Total Cu 624 ± 581 46 ± 12 270 ± 326

Total Ni 28 ± 10 64 ± 14 38 ± 54

Total Pb 22 ± 12 47 ± 1 80 ± 100

Total Cr 20 ± 7 38 ± 4 50 ± 56

Total Cd 0.12 ± 0.02 nd 5.15 ± 11.7

Total Hg 0.46 nd 1.5 ± 2.5

Total Mo 0.9 ± 0.5 nd 9.1 ± 12.9

† WTR, water treatment residual. Average and SEM Al-WTR values were calculated from Agyin-Birikorang et al. (2007, 2008), Babatunde et al. (2008), 

Bayley et al. (2008a), Codling et al. (2007), Hsieh et al. (2005), Ippolito and Barbarick (2006), Mahdy et al. (2007), Makris et al. (2006a), Mortula et al. 

(2007), Novak et al. (2007); Oladeji et al. (2007, 2008), Ramirez Zamora et al. (2008), Razali et al. (2007), Sarkar et al. (2007a, b), Sotero-Santos et al. 

(2005), Wagner et al. (2008), Yang et al. (2006), and Zhao et al. (2007).

‡ Average Fe-WTR values were calculated from Agyin-Birikorang and O’Connor (2007), Leader et al. (2008), Sarkar et al. (2007a, b), and Sotero-Santos et 

al. (2005).

§ Values from ASCE et al. (1996) based on 12 WTR (10 Al-WTR and 2 Fe-WTR).

¶ Numbers are means ± SEM.

# Not determined.



Ippolito et al.: Drinking Water Treatment Residuals  3

aluminum hydroxide and noted that 

the Al-WTR was virtually amorphous, 

having no distinct shape or form, in con-

trast to pure aluminum hydroxide, which 

exhibited a regular crystalline structure. 

Ippolito et al. (2003) and Makris et al. 

(2004) used SEM with energy dispersive 

spectroscopy to identify elements pres-

ent in WTR. Ippolito et al. (2003) noted 

the presence of Ca and Al in Al-WTR, 

whereas Makris et al. (2004) verifi ed the 

presence of Al, Fe, P, Si, Ca, and Na in 

Al- and Fe-WTR. Th ese reports imply 

that WTR are composed of a heteroge-

neous mixture of inorganic elements.

Due to their porosity and amorphous 

nature and the presence of Al and Fe 

(hydr)oxides, WTR have the propen-

sity to adsorb tremendous quantities 

of anions. Anion sorption on to WTR 

should be a function of the WTR par-

ticle size, charge, and surface area. Yang 

et al. (2006) sieved an Al-based WTR 

into <0.063-, 0.063- to 0.125-, 0.125- to 

0.25-, 0.25- to 0.425-, 0.425- to 1.00-, and 1.00- to 2.36-mm-

size fractions, noting that smaller particles (<0.25 mm) sorbed 

greater quantities of phosphate. Th e authors suggested that this 

was related to the amount of surface area present across the 

size fractions studied, with smaller size fractions containing 

greater surface area allowing for easier access of phosphate to 

micropores. Makris et al. (2004) determined Fe- and Al-WTR 

macro- and microporosity using mercury intrusion porosim-

etry. Macroporosity-specifi c surface area values were 2.5 and 33 

m2 g−1, respectively, for both WTR, whereas microporosity was 

an order of magnitude greater (27.5 and 104.9 m2 g−1, respec-

tively); the total micropore volumes for Fe- and Al-WTR were 

0.012 and 0.042 cm3 g−1, respectively. Th e authors noted that 

the WTR-specifi c surface area was reduced by treating WTR 

with P, suggesting that micropore sorption of P blocked micro-

pore openings, leading to the decrease in specifi c surface area. 

Th e fi ndings of Yang et al. (2006) and Makris et al. (2005) 

support the contention that WTR micropores sorb the major-

ity of anions.

Results are in agreement that WTR are highly porous in 

nature, containing a greater area of microporosity per gram as 

compared with macroporosity. In addition, characterization 

fi ndings suggest that the dominant metals found in WTR, Al 

and Fe, are present as amorphous phases and their concentra-

tions are similar to reported earlier. In contrast, it appears that 

heavy metal concentrations have been reduced in WTR over 

the past 15 yr, likely due to the USNPDES.

Phosphorus Sorption Properties of Water 

Treatment Residuals
In terms of WTR anion sorption, most bench-scale sorption 

research has focused on the ability of WTR to bind P under 

a variety of conditions (e.g., WTR particle size, equilibration 

time, solution pH, and P concentration). Ippolito et al. (2003) 

used a particle size range of 0.1 to 0.3 mm (no pH control), 

showing that Al-WTR retained 12,500 mg P kg−1 after a 1-d 

shaking period. Makris et al. (2004) studied P sorption over 

time (no pH control) to an Al- or Fe-WTR (<2 mm size frac-

tion), noting P sorption to be 7700 and 2000 mg kg−1 over 1 

d, respectively. However, the Al-WTR adsorbed ~10,000 mg 

kg−1 P after 10 d, whereas the Fe-WTR adsorbed 9100 mg kg−1 

P after 80 d of shaking. Dayton and Basta (2005a) used 18 

Al-WTR (<0.15 mm) and a 6-d shaking period and observed 

Fig. 1. X-ray diff raction analysis of an aluminum-based water treatment residual (Ippolito, 2001).

Fig. 2. Backscattered scanning electron microscope image of an 
aluminum-based water treatment residual (Ippolito et al., 2003).
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a P sorption ranging from 10,400 to 37,000 mg kg−1. Yang 

et al. (2006) used an Al-WTR particle size of 0.063 mm and 

determined P sorption as a function of pH (4.3, 6.0, 7.0, 8.5, 

and 9.0). Th e Al-WTR P sorption capacity was maximized near 

3500 mg kg−1 at a pH of 4.3 and 6.0 and decreased with increas-

ing pH (700 mg kg−1 at pH 9). Babatunde et al. (2008) used a 

48-h shaking period and found that Al-WTR (1.18 mm mean 

particle size) adsorbed 4520 mg P kg−1 at a pH of 4.0, whereas 

P sorption decreased with increasing pH up to 9.0 (1740 mg 

P kg−1). Razali et al. (2007) also performed P batch adsorption 

research using Al-WTR of <2.36 mm in size. Th ey observed a 

sorption capacity of 10,200 mg kg−1 for PO
4
 at a solution pH of 

4.0. Fu et al. (2008) optimized Al-WTR P removal from solu-

tion, observing 99.6% removal effi  ciency for orthophosphate, 

or 2990 mg kg−1, by holding the pH at 4.2 and using a WTR 

particle size of 0.125 mm.

Initial P sorption to the external WTR surfaces has been 

shown to be fast. Wagner et al. (2008) shook 1.0 g Al-WTR 

with 25 mL of 10 mg P L−1 for up to 24 h. Th e authors 

observed a 50% reduction in total dissolved P within 2 min, 

90% removal in 15 min, and nearly 100% removal after 24 h. 

Leader et al. (2008) equilibrated 2.0 g Fe-WTR with 20 mL of 

100 mg P L−1 for up to 24 h. A rapid binding occurred because 

nearly a 100% reduction in total dissolved P was observed 

within 30 min. Makris et al. (2005) found similar results and 

suggested that the fast stage of P sorption encompassed highly 

accessible surfaces, such as particle exteriors and macropores. 

Although these fi ndings suggest that initial P binding kinetics 

occur quickly, Makris et al. (2005) suggested that P sorption 

with time was kinetically biphasic (i.e., a quick sorption phase 

followed by longer-term sorption), with the slower sorption 

kinetic phase being associated with P diff usion into micropores.

Phosphorus diff usion into and eventual sorption onto 

WTR micropore surfaces leads to long-term P fi xation. Leader 

et al. (2008) showed that an Fe-WTR loaded with 950 mg P 

kg−1 desorbed <10 mg kg−1 after shaking for 24 h in 20 mL 

of 0.01 mol L−1 KCl, suggesting that the sorbed P is almost 

irreversibly fi xed to WTR. In an attempt to encourage metal 

oxide structural changes and lower free energy of the system, 

Agyin-Birikorang and O’Connor (2007) artifi cially aged four 

WTR (three Al-WTR and one Fe-WTR) soil (25 g WTR kg−1 

soil; Alaquod) mixtures using thermal or wet and dry incu-

bations. Th e authors spiked mixes with 100 mg P kg−1, held 

mixture pH values from 3 to 7, and incubated at 70°C for 

4.5 yr. Th e authors measured labile P concentrations, fi nding 

that WTR-immobilized P remained fi xed and was not readily 

released over the time period studied. Ippolito et al. (2003) 

used an Al-WTR loaded with 12,500 mg P kg−1 and tried to 

desorb P over a 211-d period by shaking in a 0.01 mol L−1 

CaCl
2
 solution. Results showed that as shaking time increased, 

P was further chemisorbed to Al-WTR. Using SEM–energy 

dispersive spectroscopy, Ippolito et al. (2003) showed that P 

uniformly sorbed throughout Al-WTR particles; Makris et al. 

(2005) showed similar results. Th us, WTR P retention may 

be explained by several mechanisms, including intraparticle P 

diff usion into micropores, becoming stable and immobilized 

over long periods (Makris et al., 2004). Additionally, strong P 

retention has been explained by reaction with hydrous oxide 

surfaces, which replaces singly coordinated OH− groups and 

then undergoes a rearrangement into a more stable binuclear 

bridge-type bond between cations (Bohn et al., 1985).

Various sorption studies suggest that WTR can retain from 

1740 to 37,000 mg P kg−1 and that sorbed P is not readily 

desorbed. Th e literature reports that the P sorption maximum 

is quite variable between WTR. Discrepancies in P sorption are 

related to several experimental variables, such as the WTR size 

fraction used, shaking time, and solution pH. Suggestions for 

laboratory standardization follow.

Phosphorus Sorption and Water Treatment Residual 

Size Fraction Used
Smaller particle sizes (e.g., <0.15 mm) contain greater sur-

face area for reaction, and thus greater P sorption is typically 

observed as compared with larger particle sizes (e.g., <2.36 

mm). From a land application use standpoint, WTR particles 

will likely not be separated based on size, indicating that P sorp-

tion on undisturbed samples would be a practical approach.

Phosphorus Sorption and Shaking Time
Shorter shaking times (e.g., minutes to several hours) provide 

suffi  cient time for fast P sorption to occur onto the external 

surfaces and macropores of WTR, whereas longer shaking 

periods (24 h to several days) provide for WTR diff usion into 

micropores, increasing the WTR P sorption maximum values. 

For instance, Dayton and Basta (2005a) suggested a 6-d shak-

ing period, whereas Makris et al. (2004) used a 10-d shaking 

period. Both shaking periods are convenient for laboratory 

studies; therefore, to ensure maximum P sorption, it is sug-

gested that a 10-d shaking period be used.

Phosphorus Sorption and Solution pH
Acidic solution conditions (e.g., pH 4) show greater P sorption 

onto WTR as compared with basic solution conditions (e.g., 

pH 9). From a practical use standpoint, solution pH should 

closely match that under which WTR will be used.

Laboratory, Greenhouse, and Field-Scale 

Phosphorus Sorption Experiments
Th e single greatest disadvantage, but also a potential advan-

tage as described later, of WTR land application is its ability to 

sorb plant-available P (Ippolito et al., 2003). Previous studies 

have associated plant P concentration decreases, P defi ciency 

symptoms, and decreased plant yields with WTR soil appli-

cation (Rengasamy et al., 1980; Bugbee and Frink, 1985; 

Elliott and Singer, 1988; Heil and Barbarick, 1989; Ippolito 

et al., 1999); recent studies have corroborated these fi ndings. 

Codling et al. (2002) added an equivalent of 0, 22, 56, and 112 

Mg Al-WTR ha−1 to Evesboro, Matapeake, and Woodstown 

soil series (Quartzipsamments, Hapludults, and Hapludults, 

respectively). All three series contained Mehlich-3–extractable 

P concentrations above 800 mg kg−1. Th ey were incubated with 

WTR for 7 wk, and then three consecutive cycles of wheat 

(Triticum aestivum L.) were grown. Plant and Mehlich-3 P 

concentrations decreased in the three soils with increasing 

Al-WTR rates during the three cropping cycles. After the 

second and third cropping cycle associated with the 56 and 
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112 Mg ha−1 Al-WTR application rates, plant tissue P con-

centrations were low or defi cient. Mahdy et al. (2007) added 

Al-WTR to calcareous (Calciorthids), sandy (Torripsamments), 

and clay (Torrifl uvents) soils at rates of up to and equivalent to 

90 Mg ha−1 and then grew corn (Zea mays L.). In all three soils, 

application of Al-WTR at rates up to 67 Mg ha−1 increased 

plant P concentrations and yield. Further increases in Al-WTR 

application rate decreased plant P concentrations in the calcar-

eous and clay soil. In contrast, Al-WTR application at greater 

rates continued to cause an increase in P concentrations in the 

sandy soil.

Additional studies have also shown how WTR soil applica-

tion can reduce plant-available P concentrations. In a green-

house experiment using an Immokalee fi ne sand (Alaquods), 

Oladeji et al. (2007) evaluated Al-WTR (equivalent rates of 0, 

22, and 56 Mg ha−1) and four P sources (two biosolids, poultry 

manure, and triple superphosphate) on bahiagrass (Paspalum 
notatum Fluggae) plant yields and tissue P concentrations. 

Phosphorus application rates were based on P-based or N-based 

nutrient management guidelines. For all P-source treatments at 

P- or N-based rates, the Al-WTR application increased the soil 

P storage capacity, and plant yields and tissue P concentrations 

tended to be greatest in the absence of Al-WTR and least with 

the greatest WTR rate.

Th e disadvantage of reducing plant-available P is actually an 

advantage in situations where soil P concentrations are grossly 

in excess of the amount required for plant growth. Application 

of WTR to soil with excessive P concentrations was found 

to reduce extractable soil P concentrations and to decrease 

the amount of P available for off -site transport (Novak and 

Watts, 2004). Th e addition of WTR on manure- or biosolids-

amended soils could be a solution for reducing water body P 

pollution by increasing the soils ability to retain P (Penn and 

Sims, 2002; Novak and Watts, 2004). If found to occur at the 

fi eld-scale, applications of WTR with elevated P sorption max-

imum values could be a part of a best management practice for 

biosolids or manure fi eld applications.

In a laboratory study, Ippolito and Barbarick (2006) used a 

Platner loam (Paleustolls) soil with a history of biosolids appli-

cation (eight biosolids applications at agronomic N rates [6.7 

Mg ha−1 yr−1]) for dryland winter wheat [Triticum aestivum 

(L.)]. In the soil, extraction with Olsen, Bray-1, and Mehlich-3 

for extractable P concentrations revealed that they contained 

57, 95, and 53 mg kg−1, respectively. Increasing amounts of 

Al-WTR (up to an equivalent of 22.4 Mg ha−1) were added 

to the loam soil, and then it was shaken for 1 wk. Extractable 

P from all three P tests decreased with increasing WTR rate; 

however, Bray-1 and Mehlich-3 methods demonstrated that 

WTR addition could lower P concentrations initially consid-

ered high or medium to low according to the Colorado P Risk 

Index. In a simulated rainfall experiment on a Dickson silt 

loam (Fragiudults), Gallimore et al. (1999) broadcast-applied 

poultry litter (6.72 Mg ha−1) to a bermudagrass (Cynodon dac-
tylon L. Pers.) pasture and then broadcast-applied Al-WTR at 

11.2 and 44.8 Mg ha−1 or buff er strip applied Al-WTR at 44 

Mg ha−1. After rainfall simulation, the mean dissolved runoff  P 

concentrations decreased from 15.0 to 8.6 (43% reduction) or 

to 8.12 (46% reduction) mg kg−1 for the broadcast- and buff er 

strip-applied 44.8 Mg ha−1 application rates, respectively; dis-

solved P was not signifi cantly reduced with the lower broadcast 

Al-WTR application.

Bayley et al. (2008a) studied the long-term eff ects (12–13 

yr) of biosolids (10 Mg ha−1) and Al-WTR (5, 10, 21 Mg 

ha−1) coapplications to semiarid soils (Altvan sandy loam, 

Argiustolls). After the fi eld experiment, a conceptual model 

of P fl ow was developed to evaluate corresponding changes in 

inorganic and organic soil P fractions. Th ey reported that, 13 

yr after application, the Al-WTR remained as the major inor-

ganic P sink. In a fi eld study on Immokalee sand (Alaquods), 

Agyin-Birikorang et al. (2007) also evaluated the long-term 

P immobilization by an Al-WTR. Two sites with a history of 

heavy poultry manure application received 114 Mg Al-WTR 

ha−1. After 7.5 yr, the Al-WTR still reduced total labile P in 

runoff  and leachate by >60% as compared with control plots. 

It was suggested that WTR-immobilized P was stable and will 

remain fi xed indefi nitely as long as the Al-WTR solid integrity 

is maintained (Agyin-Birikorang et al., 2007).

Wagner et al. (2008) investigated the use of Al-WTR on 

grassed buff er strips for managing biosolids runoff  P. Biosolids 

were surface-applied to an Andover channery loam (Fragiuults) 

based on a target P rate of 100 kg P ha−1 to the upper 75% 

of sloped areas. Meanwhile, WTR were surface applied at 20 

Mg ha−1 to a grassed buff er strip encompassing the lower 25% 

of sloped areas (average slope, 9.5%). Th e authors performed 

rainfall simulations at a rate of 62.4 mm h−1, which exceeded 

the 100-yr storm event for the area. Water treatment residuals 

usage in grassed buff er strips did not statistically lower total or 

dissolved P as compared with grassed buff er strips alone. Th ese 

fi ndings were attributed to insuffi  cient contact time between 

Al-WTR and runoff  P due to low WTR application rates (20 

Mg ha−1) and nonuniform application (Wagner et al., 2008). 

Th e authors suggested increased buff er length and slope reduc-

tion to achieve greater P runoff  removal. Additionally, it was 

suggested that adjustments in contact time should reduce P 

movement into water bodies. Th ese reports are in contrast to 

the fi ndings of Dayton and Basta (2005b), who showed a 67 to 

86% reduction in runoff  P from a silt loam soil (Fragiudults). 

Th ese reductions were due to P sorption onto the WTR amor-

phous Al oxide phase, with the use of 20 Mg ha−1 Al-WTR in 

grassed buff er strips. To achieve these results, the authors used 

5% slope with a 70 mm h−1 rainfall intensity. Although Dayton 

and Basta (2005b) used a slightly greater rainfall intensity as 

compared with Wagner et al. (2008), the reduction in slope 

appeared to support Wagner’s conclusion that slope reduction 

would increase P runoff  removal.

Large-scale P removal from water bodies via WTR usage has 

also been researched. Mortula and Gagnon (2007) investigated 

the use of Al-WTR for P adsorption from secondary municipal 

wastewater effl  uent. Th e authors noted a 94 to 99% orthophos-

phate removal using 4 to 16 g Al-WTR L−1 and some Al leach-

ing (<0.5 mg L−1), but the Al leaching was not high enough to 

be of concern for aquatic species in receiving waters. In addi-

tion, Al-WTR were able to sorb organic matter from process 

waters, as shown by a decrease in biochemical oxygen demand.

Zhao et al. (2008) explored the possibility of using Al-WTR 

as the sole media for a reed bed farmyard wastewater treat-

ment system. In unvegetated vertical fl ow systems, the authors 

showed a removal rate of 25, 50, and 99.5% for chemical 



6 Journal of Environmental Quality • Volume 40 • January–February 2011

oxygen demand (COD), suspended solids, and P, respectively. 

Unvegetated horizontal fl ow systems also removed signifi cant 

quantities of biochemical oxygen demand, COD, suspended 

solids, and P (78, 82, 93, and 92%, respectively). No seri-

ous operational problems, such as clogging or Al release, were 

observed, and the authors suggested further large-scale research 

be performed.

Yang et al. (2007) used Al-WTR as a potential co-condi-

tioner and dewatering agent in anaerobically digested biosol-

ids. A 2:1 biosolids/Al-WTR ratio was the optimal mix ratio 

on a volume basis, resulting in 99% P reduction in reject waste 

water. Th e authors also showed that Al-WTR enhanced the 

dewaterability of biosolids because the Al-WTR played a role 

in charge neutralization and lowered the specifi c resistance to 

fi ltration and capillary suction time. Polymer dosage, for bio-

solids dewatering purposes, could also be reduced from 120 

to 15 mg L−1 with Al-WTR usage and should be refl ected as a 

substantial cost savings to municipalities.

Water treatment residuals have been used to reduce waste-

water and water P concentrations, and, depending on the 

dosage, between 94 and 99.5% P removal effi  ciency has been 

realized. Water treatment residuals also have the proven ability 

to sorb plant-available soil P, which could be construed as a 

negative in situations where P is limiting or as a positive when 

P is in excess. Increasing WTR application rates generally cause 

decreases in plant-available soil P and plant P concentrations. 

Water treatment residuals can also be used in buff er strips down 

slope from soils containing elevated P concentrations. Based on 

our results, it is suggested that a 20 Mg ha−1 WTR buff er strip 

application rate could be used to reduce runoff  P by 67 to 86% 

on slopes no greater than 5%. More research is needed in this 

area to identify the soil types and initial P conditions, slopes, 

rainfall intensities, and WTR types and application methods 

that are most eff ective in reducing off site P transport.

Water Treatment Residual Usage for 

Removing Other Anionic Contaminants 

and Mercury from Water Sources
In addition to removing P from soils and waters, WTR have 

the proven ability to sorb and remove other anions from the 

environment. Th us, WTR could help improve human and 

environmental health conditions.

Perchlorate Sorption by Water Treatment Residuals
In humans, perchlorate (ClO

4
−) interacts and reduces iodine 

uptake into the thyroid gland, with changes in thyroid hor-

mone secretion potentially resulting in hypothyroidism 

(USEPA, 2008). Changes are typically reversible in adults, 

but fetuses, infants, and young children require proper thy-

roid hormones for normal growth and development (USEPA, 

2008). Irreversible changes, particularly in the brain, are asso-

ciated with hormone insuffi  ciencies during human develop-

ment (Chan and Kilby, 2000; Glinoer, 2007). Th ese issues led 

Makris et al. (2006a) to study of ClO
4
− adsorption on Al-WTR 

via batch equilibration. Th e Al-WTR were reacted with inor-

ganic ClO
4

− at concentrations up to 200 mg L−1, and solutions 

were shaken for up to 96 h. Th e authors found that the greatest 

amount of ClO
4

− (65%) was removed with the lowest initial 

ClO
4

− concentration and that removal effi  ciency increased to 

76% after 24 h. Th e authors also found no signifi cant diff er-

ence in the amount of ClO
4

− removed between 1 and 2 h, but 

removal signifi cantly increased after 24 h at all ClO
4
− concen-

trations. Th is suggested that the initial ClO
4

− sorption occurred 

on surfaces and that diff usion into micropores was a rate limit-

ing step. Makris et al. (2006a) further showed the inability of 

perchlorate to desorb from Al-WTR, which suggested stable 

immobilization and that Al-WTR may be a promising sorbent 

for perchlorate removal in contaminated systems.

Selenium Sorption by Water Treatment Residuals
Aluminum-WTR also show promise at sorbing soluble sele-

nium (Se) forms in water sources. Environmental Se risks 

include bioaccumulation, reproduction failure, deformities, 

and die-off  of migratory waterfowl, fi sh, insects, and plants 

(USGS, 2005; USGS, 2008; U.S. Fish and Wildlife Service, 

1999). Th is prompted Ippolito et al. (2009b) to study selenate 

[Se(VI)] and selenite [Se(IV)] adsorption by Al-WTR across 

a pH range typically found in waters and soils. Th e Al-WTR 

were reacted with Na
2
SeO

4
 [Se(VI)] or Na

2
SeO

3
 [Se(IV)], and 

mixtures were shaken for 24 h while exposed to laboratory 

atmospheric conditions or a stream of N
2
 gas, respectively. Th e 

Se(VI) samples were allowed to dry under atmospheric condi-

tions, whereas the Se(IV) samples were dried in an anaerobic 

glove bag. Aluminum-WTR adsorbed between 1400 and 2100 

mg Se(VI) kg−1 and between 1400 and 1950 mg Se(IV) kg−1. 

Using X-ray absorption spectroscopy, the authors showed that 

Se(VI) and Se(IV) sorption occurred as outer-sphere versus 

inner-sphere complexes, respectively. Peak (2006) suggested 

that Se(VI) adsorption onto a hydrous aluminum oxide, regard-

less of pH, was as an outer-sphere complex. Peak (2006) also 

found similar Se-O and Se-Al shell values for Se(IV) adsorbed 

onto hydrous aluminum oxide at pH 8 and suggested inner-

sphere complexation as the adsorption mechanism at this pH. 

Th e Ippolito et al. (2009b) study found that Se(IV) sorption 

to Al-WTR under anoxic conditions reduced Se(IV) to Se(0) 

possibly due to redox interactions with organic matter, Fe(II) 

or Mn(II, III) bearing mineral/oxide phases, or with biofi lms 

present in the Al-based WTR. Th e authors further showed that 

the oxidation of Se(0) or Se(IV) was irreversible once sorbed 

to Al-WTR, suggesting stability. Th us, Al-WTR could play a 

favorable role in sequestering excess Se in aff ected water sources.

Arsenic Sorption by Water Treatment Residuals
Water treatment residuals have shown promise in sorbing arse-

nic (As). Arsenic can enter ecosystems from natural geologic 

deposits or from agriculture or industrial practices (USEPA, 

2006). Long-term ingestion of As causes symptoms including 

thickening and discoloration of the skin, stomach pain, nausea, 

vomiting, diarrhea, partial paralysis, and blindness (USEPA, 

2006). Arsenic has been linked to bladder, lung, skin, kidney, 

nasal passage, liver, and prostate cancer (USEPA, 2006). 

Th us, removing As from drinking water sources is important 

for protecting human health. Makris et al. (2006b) initiated 

research in WTR-As adsorption and removal from solution. 

Th e researchers studied As(III) and As(V) sorption on Fe- and 

Al-based WTR using batch equilibration. Results showed that 
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Al-WTR sorbed a greater quantity of As(V) than Fe-WTR 

(∼14,000 versus 10,000 mg kg−1, respectively), whereas the 

opposite was true for the As(III) species (∼8000 versus 15,000 

mg kg−1, respectively). Th e greater external and internal spe-

cifi c surface area of the Al-WTR could explain the diff erence in 

As(V) adsorption (Makris et al., 2004). Reductive dissolution 

of the Fe phase in Fe-WTR increased the amount of sorption 

sites by creating new surfaces; thus, greater As(III) sorption 

occurred with the Fe-WTR (Makris et al., 2006b). Increasing 

solid/solution ratios also resulted in a signifi cant increase in 

As(V) sorption by Fe-WTR, although Al-WTR sorbed a greater 

percentage of As(V) as compared with Fe-WTR across solid/

solution ratios. Th e amount of As(III) sorbed by Al-WTR was 

always less than the amount sorbed by Fe-WTR at any specifi c 

solid/solution ratio. Th e authors further showed that As(V) or 

As(III) desorption from Al- or Fe-WTR was low, which sug-

gested, as with the Makris et al. (2006a) and Ippolito et al. 

(2009b) studies, that sorption could essentially be considered 

as stable immobilization.

Sarkar et al. (2007a) studied As immobilization in two poor 

(i.e., sandy) As-adsorbing Florida soils (Alaquods, Paleudults) 

amended with Al- or Fe-WTR. Th e WTR were mixed with 

soil at a rate of up to 10% by weight and reacted for 2 d with 

As(V) loads up to 8000 mg kg−1. After the adsorption period, 

mixtures were reacted with P for 2 d to determine the potential 

for As desorption. Th e authors showed that Al-WTR–amended 

soils sorbed 98% of the introduced As within 0.5 h regardless 

of the initial As load. Arsenic sorption by Fe-WTR was linear 

but proceeded slower after 0.5 h; 100% of the As was sorbed 

by Fe-WTR after 48 h. Greater WTR application rates resulted 

in greater As sorption, whereas As desorption was not depen-

dent on WTR rate. Rather, As desorption was linearly related 

to the amount of previously sorbed As onto WTR (Sarkar et 

al., 2007a).

Sarkar et al. (2007b) performed a companion study to deter-

mine the eff ect of Al- and Fe-WTR on As(V) bioaccessibil-

ity and phytoavailability in a low As-sorbing soil (Immokalee 

sand, Alaquod) contaminated with arsenical pesticides and fer-

tilized with triple superphosphate. Th is is an important area 

of science because P fertilizer added to As-containing soils has 

been shown to cause competition for exchanges sites, resulting 

in As release into solution; this condition causes As concentra-

tions to increase in groundwater (Codling and Dao, 2007). A 

poor As-sorbing soil was amended with Al- or Fe-WTR at rates 

between 0 and 5% by weight and then spiked with sodium 

arsenate and triple superphosphate at 90 and 115 mg kg−1 of As 

or P, respectively. Th e authors used an in vitro gastrointestinal 

test to estimate bioaccessibility (mimicking the human stom-

ach and intestinal phases) and found that that increasing WTR 

application rates decreased bioaccessibility, whereas Fe-WTR 

were more eff ective than Al-WTR in resisting As release. 

Arsenic phytoavailability was found to decrease in the presence 

of both WTR at rates >1.25% WTR. However, greater WTR 

rates were required to decrease soil bioaccessibility (>2.5%). It 

was recommended that a minimal rate of 2.5% of these studied 

Fe- or Al-WTR could be a viable and eff ective in situ remedia-

tion method for low As-sorbing soils even in the presence of P 

fertilizer (Sarkar et al., 2007b).

Similar to the results of Codling and Dao (2007), Makris 

et al. (2007) showed that an Fe-WTR could adsorb 13,500 

mg As(III) or As(V) kg−1 and did not readily release As in the 

presence of P due to the abundance of adsorption sites or 

strong As immobilization by Fe-WTR. Camacho et al. (2009) 

observed similar results with As(V) adsorption onto Fe-WTR 

treated with lime. To explain the stability fi ndings, Makris et al. 

(2007) then used extended X-ray absorption fi ne structure to 

determine As(III) or As(V) stability by Fe-WTR. Th e extended 

X-ray absorption fi ne structure spectroscopy suggested that 

As(III) or As(V) formed inner sphere mononuclear, bidentate 

complexes. Th ese are strong associations between Fe-WTR 

adsorption sites and As, supporting minimum release fi ndings 

and supporting the previous fi ndings of Makris et al. (2006a, 

2006b) and Ippolito et al. (2009b) with regards to WTR sorp-

tion phenomenon.

Arsenic in an organic form has been added to livestock 

feed since 1907 to promote growth or suppress bacterial 

and parasitic diseases (Woolson, 1975). In particular, rox-

arsone (3-nitro-4-hydroxyphenylarsonic acid) is one of the 

most widely used organoarsenical feed additives to promote 

growth, control parasites, and improve feed effi  ciency in inten-

sive animal production, such as poultry (Yao et al., 2009). 

Organoarsenical compounds not assimilated by chickens 

are excreted and are known to be converted to inorganic As 

(Ikehata et al., 2006). Brown et al. (2005) noted that roxar-

sone degradation could increase soil As mobility in poultry 

litter–amended soils. O’Connor et al. (2005) showed that rox-

arsone, and consequently As, in residential homes near poultry 

litter–applied fi elds was transported via air and represented a 

signifi cant human health risk. Th e authors recommended that 

arsenical feed additives be abandoned and replaced with other 

sources. Th us, means of reducing As availability in roxarsone-

containing poultry litter should be of paramount importance. 

Makris et al. (2008) examined the use of Al-WTR in reducing 

As availability via roxarsone degradation from poultry litter by 

amending it with 2.5, 5, 10, and 15% Al-WTR by weight; these 

percentages are typical for controlling poultry litter P avail-

ability (Moore et al., 1999). In incubation studies, the authors 

found that dissolved As concentrations for all Al-WTR rates, 

except the 2.5% rate, were signifi cantly lower than the control 

(unamended poultry litter). Based on their fi ndings, Makris et 

al. (2008) suggested that mixing or composting poultry litter 

with Al-WTR could minimize poultry litter–amended soil As 

mobility and movement into water bodies.

Mercury Sorption by Water Treatment Residuals
Aluminum-WTR also have the ability to sorb Hg from solu-

tion. Mercury is a highly toxic element, with risk determined by 

the likelihood of exposure, the form of Hg, and geological and 

ecological factors that infl uence how Hg moves and changes 

form in the environment (USGS, 2000). Methylmercury 

(CH
3
Hg) is the most toxic form, aff ecting the immune system, 

altering genetic and enzymatic systems, and damaging the ner-

vous system (USGS, 2000). Issues with Hg in aqueous solu-

tions prompted Hovsepyan and Bonzongo (2009) to research 

the ability of Al-WTR to sorb and immobilize Hg. In a series 

of batch experiments, the authors showed a maximum sorption 

capacity of 79 mg Hg g−1 Al-WTR. Mercury desorption was 
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low at 1.5% of that previously sorbed. Sorption and desorption 

characteristics were similar to the perchlorate and Se fi ndings 

of Makris et al. (2006a) and Ippolito et al. (2009b), respec-

tively, suggesting that Al-WTR could also play a role in sorbing 

excess Hg in aff ected waters.

Similar to previous WTR-P research, the above fi ndings 

showed that sorption of ClO
4
−, Se(0, IV, VI), As (III, V), and 

Hg was due to diff usion into and sorption onto micropore 

surfaces, rendering these contaminants essentially immobile. 

Micropore diff usion is likely to be the rate-limiting step, and 

thus WTR contact time with the contaminant is of primary 

concern. Although most work has used a 24- to 48-h contact 

time period, to be successfully used in remediation situations, 

the following conditions need to be considered: (i) WTR 

type and particle size, (ii) contaminant stream fl ow rates, (iii) 

climatic conditions (e.g., winter vs. summer), and (iv) con-

tact time. Nonetheless, the work by Camacho et al. (2009), 

Hovsepyan and Bonzongo (2009), Ippolito et al. (2009b), 

Makris et al. (2006a, 2006b, 2007, 2008), and Sarkar et al. 

(2007a, 2007b) emphasize the utility of WTR to improve 

environmental quality.

Water Treatment Residual Eff ects on 

Microfauna, Insects, and Animals

Water Treatment Residual Eff ects on Microfauna
Land application of WTR can aff ect plant and soil chemis-

try, so it follows that WTR should also aff ect soil microfauna. 

Bayley et al. (2008b) examined the long-term eff ects of a 

single co-application and short-term eff ects of a repeated co-

application of biosolids (10 Mg ha−1) and Al-WTR (5, 10, 

and 20 Mg ha−1) on P-cleaving enzymes in semiarid rangeland 

soil (Altvan sandy loam, Argiustolls). After WTR application, 

the authors observed a decrease in soil phosphodiesterase and 

pyrophosphatase and an increase in acid phosphatase and 

phytase activity. Th e decrease in phosphodiesterase enzymatic 

activity suggested less P mineralization from biomass sources 

(i.e., nucleic acids and phospholipids), whereas increases in 

acid phosphatase and phytase activity indicated that ester-

P and inositol-P may be important plant-available P sources 

in soils amended with Al-WTR. More importantly, Bayley 

et al. (2008b) suggested that Al-WTR application may have 

triggered a perceived P defi ciency response, causing micro-

organisms or plants to secrete acid phosphatase and phytase. 

Ippolito et al. (2009a) studied plant community structure at 

the Bayley et al. (2008a) research site, noting that plant com-

munity composition and percent cover were unaff ected by 

Al-WTR. However, a decrease in plant P content occurred, but 

no observable P defi ciency symptoms were present. Ippolito et 

al. (2009a) also used total ester-linked fatty acid methyl ester 

analysis and found that biosolids and Al-WTR co-applications 

did not aff ect the soil microbial community structure.

Water Treatment Residual Eff ects 

on Insects and Animals
Few studies have researched WTR toxicity on insects or ani-

mals. Sotero-Santos et al. (2005) studied Fe- and Al-WTR sur-

vival and reproduction toxicity eff ects on water fl ea (Daphnia 

similis) performed in 25, 50, or 75% (wt/vol) WTR-diluted 

systems. In general, Fe- and Al-WTR did not cause acute tox-

icity, but long-term Fe-WTR exposure caused some mortality 

and decrease in reproduction potential. Th e Al-WTR caused 

reductions in reproduction. Th e authors could not make a 

direct connection between WTR parameters (e.g., turbidity, 

solids content, N, P, Al, Fe, and COD) and the degree of tox-

icity. Van Alstyne et al. (2007) researched Al-WTR ingestion 

in lambs (Ovis aries), pointing out WTR land application 

concern with regard to possible grazing animal intake because 

grazing herbivore soil ingestion can be as great as 24% of 

total diet (Medvitz, 1998). Water treatment residual intake 

was of further concern especially with regard to the antago-

nistic relationship of Al to P within the animal. Dietary treat-

ments included a control of 10% sand, 9.3% sand + 0.7% 

AlCl
3
, 2.5% Al-WTR + 7.5% sand, 5% Al-WTR + 5% sand, 

10% Al-WTR + 0% sand, and 10% Al-WTR + 0% sand + 

double the mineral-vitamin premix quantities. Over the 

14-wk study duration, body weights increased for all treat-

ments, and average daily gains and feed intake also increased 

with time. Increases were attributed to heightened appetite, 

which occurs in growing animals (Van Alstyne et al., 2007), 

along with the low bioavailability of Al in WTR (O’Connor 

et al., 2002). Lambs receiving dietary Al-WTR were heavier 

than animals consuming AlCl
3
, and those lambs receiving the 

control or any Al-WTR had a greater apparent P absorption 

than those receiving AlCl
3
. Th us, relatively low bioavailable 

Al sources should not depress P absorption because the Al 

would not readily react with P in the gastrointestinal tract 

(Van Alstyne et al., 2007). Th ese results suggest that the co-

consumption of land-applied Al-WTR in a forage system 

does not pose a risk to grazing animals.

Th e limited amount of research regarding the eff ects of 

WTR on microfauna, insects, and animals are optimistic. 

Land application of WTR may trigger a perceived P defi ciency 

response in microorganisms, but microbial community struc-

ture is not aff ected. Long-term exposure to Fe-based WTR may 

cause increased water fl ea mortality, but a correlation between 

mortality and WTR characteristics could not be made. It has 

also been shown that no risk is associated with Al-WTR con-

sumption by grazing herbivores. Although these fi ndings are 

enlightening, more research is needed to ensure that terrestrial 

and aquatic ecosystem health is maintained across sites receiv-

ing WTR applications.

Water Treatment Residuals and Metals
When added during water treatment, Al or Fe salts precipitate 

as amorphous (hydr)oxides, and thus Al or Fe concentrations 

in WTR are greater than most other constituents. In terms of 

Al-based WTR, elevated Al concentrations have been a general 

land application concern due to potential plant Al toxicities and 

Al movement into surface waters, which may damage aquatic 

environments (Codling et al., 2007). However, it is at low soil 

pH values (pH < 5.2) (Foy 1996, 1997) where Al becomes 

more soluble and can be toxic to plants (Sparks, 2003). Th e 

pH of Al-based WTR is on average 6.7 (Table 1); thus, Al tox-

icity from WTR should not be an issue. Regardless, Al from 

Al-WTR has been studied under a number of scenarios.
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In a continuous fl ow column test, Babatunde et al. (2008) 

demonstrated that Al-based WTR (pH not determined) could 

be used to remove P from water with Al content remaining 

below 0.1 mg L−1. Mahdy et al. (2008) applied Al-WTR (pH 

7.4) to a clay (Torrifl uvent), sand (Torripsamment), and cal-

careous (Calciorthid) soil (pH 7.7–8.1) at rates up to 40 g kg−1 

and did not observe an increase in soil-extractable Al content 

(Al removed via 1 mol L−1 KCl). Codling et al. (2007) amended 

a Woodstown fi ne sandy loam (Hapludults; pH 5.8) and an 

Evesboro sand (Quartzipsamments; pH 6.2) with two poultry 

litters (pH 8.3–8.5) and up to 11.2 Mg Al-based WTR ha−1 

(pH 7.2) and noted no change in extractable soil Al content (Al 

extracted by 0.02 mol L−1 CaCl
2
) 1 or 2 yr after application. 

Codling (2008) studied an Evesboro sand (Quartzipsamments; 

pH 5.2) and a Matapeake silt loam (Hapludults; pH 4.4) 

amended at a 1:1 ratio (molar by-product of Al to molar soil P) 

with two diff erent Al-based WTR (Al-WTR pH 7.7 and 7.5) 

and then acidifi ed the soils to a pH of 4.0 to 5.0. After 18 wk 

of acidifi cation, the author noted an increase in Mehlich-3–

extractable Al concentration only with the Evesboro sand (up 

to 911 mg kg−1) as compared with a control (521 mg kg−1). 

Gallimore et al. (1999) land-applied two WTR (pH 7.0 and 

7.6) up to 45 Mg ha−1 to Dickson silt loam (Fragiudults) and 

a Pirum fi ne-sandy loam (Hapludults) (both strongly acid) 

(USDA-NRCS, 2008) and did not observe increases in dis-

solved or total soluble Al in runoff . In a fi eld study, Agyin-

Birikorang et al. (2009) surface-applied biosolids (pH ~8.0) 

or poultry litter (pH 6.8) at N-application rates required 

for bahiagrass (Paspalum notatum) and then surface-applied 

Al-WTR (pH 5.6) at 22.4 Mg ha−1 to an Immokalee fi ne 

sand (Alaaquods) with pH values of 5.5, 5.9, and 5.1 in the 

A, E, and Bh horizons, respectively. Th e authors showed that 

groundwater total dissolved Al concentrations were unaff ected 

by Al-WTR application, suggesting that Al-WTR could be 

safely used in a land-application program. Oladeji et al. (2009) 

applied up to 25 g kg−1 of Al-WTR in a greenhouse and a fi eld 

experiment to Bahiagrass or ryegrass (Lolium perenne L.) grown 

in an Immokalee fi ne sand (Alaquods). No increase in plant 

Al content was observed in either experiment. Th ese diverse 

reports corroborate that Al toxicity or leaching from the solubi-

lization of WTR should not be an issue under most conditions. 

Because most WTR are typically stockpiled on site, it could be 

assumed that the WTR used in these studies were aged; how-

ever, changes in chemical properties due to aging of the WTR 

used were not considered.

Some studies have shown that age infl uences WTR’ reac-

tion with elements. Agyin-Birikorang and O’Connor (2009) 

showed that Al reactivity of freshly generated Al-WTR 

decreased with time and suggested that >6 mo of fi eld drying 

was required to reduce and stabilize the most reactive Al form 

in WTR. Some regulators in Australia suggest limiting land 

application of Al-WTR to the “aged” materials to minimize 

ecological Al risk (Agyin-Birikorang and O’Connor, 2009). 

However, Agyin-Birikorang and O’Connor (2009) obtained 

supernatant liquid from freshly generated 2- and 4-wk-old 

Al-WTR samples. Th e supernatant pH was ~5.1; thus, Al spe-

ciation would likely be dominated by hydrolysis and organi-

cally complexed Al forms rather than free Al3+. Th e authors 

concluded that supernatant liquid from freshly generated 

Al-WTR should not pose an ecological risk.

Land application of WTR has also been shown to aff ect 

other soil metals and constituents. Residual metals from the 

drinking water chemical purifi cation process can be associated 

with Al-WTR and if solubilized could potentially stress plants. 

For instance, Novak et al. (2007) examined Mn, Na, S, and 

total organic carbon (TOC) in leachate from a Norfolk loamy 

sand (Kandiudults, pH 5.6) amended with three diff erent 

Al-WTR (pH 3.8, 5.0, and 5.8), each applied at an equivalent 

rate of 134 Mg ha−1. Th e WTR were obtained from treatment 

facilities using Al
2
(SO

4
)

3
, NaOH, and KMnO

4
 for water puri-

fi cation. All Al-WTR increased leachate Na, S, TOC, and Mn 

content. Th e authors contended that Na and S concentrations 

were suffi  ciently soluble that they would be reduced to back-

ground after signifi cant rainfall. Th e TOC losses were due to 

Al-WTR containing one to two orders of magnitude greater 

TOC as compared with background soil. One of the Al-WTR 

reduced soil pH, whereas the remaining two raised soil pH. 

Th e change in pH and the oxidation-reduction potential of the 

soil/Al-WTR mixture favored Mn solubilization and increased 

Mehlich-1–extractable Mn concentrations in soils amended 

with Al-WTR enriched with Mn (control extractable Mn 

was below detection; WTR Mn+soil concentrations ranged 

between 21 and 239 mg kg−1). Th ese conditions could poten-

tially cause plant stress to Mn-sensitive crops such as soybeans 

(Glycine max L. Merr.) because, according to Mascagni and 

Cox (1985), between 1 and 10 mg kg−1 Mehlich-1–extractable 

Mn is suffi  cient for soybean production. Th us, Novak et al. 

(2007) recommended a WTR prescreening procedure to deter-

mine if WTR land application would release elements that may 

cause plant growth problems.

Likewise, another study was concerned about environmen-

tal metal eff ects from Al-WTR–amended soil. Ippolito et al. 

(2009a) researched the long-term eff ects of a single co-appli-

cation and short-term eff ects of a repeated co-application of 

biosolids (10 Mg ha−1) and Al-WTR (5, 10, 21 Mg ha−1) on 

rangeland soils (Altvan, Argiustolls) and plants. Th e authors 

noted no change in soil pH, EC
e
, NO

3
–N, NH

4
–N, total C, 

or total N by WTR application. However, ammonium-bicar-

bonate diethylene triamine pentaacetic acid (DTPA)–extract-

able soil Mo decreased with increasing Al-WTR rate, likely due 

to WTR adsorption. Ippolito et al. (2009a) also showed that 

Mo content in the two dominant on-site plant species (western 

wheatgrass [Pascopyrum smithii (Rydb.) A. Love] and squirrel-

tail [Elymus elymoides (Raf.) Swezey]) decreased with repeated 

WTR application as compared with a single WTR application. 

Similar greenhouse research by Ippolito et al. (2002) showed a 

decrease in western wheatgrass Mo tissue content with increas-

ing WTR application to an Altvan (Argiustolls) soil. In both 

cases, however, Mo defi ciencies were not observed. Due to 

their amorphous nature, WTR act much like noncrystalline Fe 

and Al soil mineral species and have the ability to sorb anions 

such as Mo. Soils that contain appreciable quantities of Fe or 

Al, especially in noncrystalline forms, also tend to have low Mo 

availability due to adsorption (Tisdale et al., 1985).

Mahdy et al. (2008) studied the eff ects of Al-WTR applica-

tion (up to an equivalent of 90 Mg ha−1) to three soils (a clay, 

Torrifl uvents; a sand, Torripsamments; and a Calciorthid) on 
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corn and soil DTPA-extractable heavy metal concentrations. 

In general, greater Al-WTR applications tended to decrease 

corn shoot, root, and soil DTPA-extractable Cd, Pb, Cu, and 

Ni concentrations. Th e authors concluded that the reduction 

in DTPA-extractable heavy metals, and thus the reduction in 

plant concentrations, was due to fl oc-adsorption and coprecip-

itation processes that are typically used to remove heavy metals 

from waters and soil.

Water treatment residuals have also been used as a heavy 

metal adsorbent. Brown et al. (2007) used Al- and Fe-WTR 

at the Tar Creek National Priorities List Superfund Site to 

determine if these amendments could restore vegetative cover 

and reduce in situ metal availability. Water treatment residuals 

were applied at 50 Mg ha−1 in combination with diammonium 

phosphate, composted biosolids, or lime-stabilized biosolids 

to soils (unclassifi ed) or tailings containing between 623 and 

4003 total Pb, 5308 to 6830 total Zn, and 25.5 to 28.7 total 

Cd. Composted biosolids + Al-WTR resulted in low bioacces-

sible Pb and a healthy plant cover with low Zn content.

Water Treatment Residuals and Radioactivity
Radioactive suspended particles may occur in drinking water 

if source waters are in contact with radioactive-containing geo-

logic materials. In these cases, source water radionuclides are 

dilute, but when fl occulated during drinking water purifi ca-

tion they can concentrate. Th e term “Technology-Enhanced 

Naturally Occurring Radioactive Materials,” or TENORM, 

pertains to anthropogenic materials such as WTR that accu-

mulate radioactivity through industrial processing. Th e major-

ity of radionuclides in TENORM are found in the U238, Th 232, 

and K40 decay chains (TENORM, 2007). Th e removal of 

radionuclides from drinking water via treatment technologies 

and applicable rules and regulations pertaining to TENORM is 

beyond the scope of this manuscript. However, detailed infor-

mation can be found in a recent USEPA (2005) document.

O’Brien and Cooper (1998) stated that the dominant 

radioactivity exposure pathways in most situations are exter-

nal gamma radiation, inhalation of radon gas and its decay 

products, inhalation of radioactive dust, and ingestion of con-

taminated food or water. Th e authors implied that WTR use 

as fertilizers may be a means of radioactivity exposure due to 

the radioactive concentrating eff ect during coagulation/fl occu-

lation. Jimenez and De La Montana Rufo (2002) supported 

O’Brien and Cooper’s (1998) contention, showing that under 

certain water treatment purifi cation conditions radioactivity 

can be decreased in the drinking water supply. Th e addition of 

salts to water during the purifi cation process favors the elimi-

nation of 226Ra because Ra is known to be eliminated from 

solution via coprecipitation with sulfates or sorbed onto oxides 

(Jimenez and De La Montana Rufo, 2002). Th e authors also 

found that adjusting water pH to between 7.1 and 7.8, increas-

ing the presence of salts in water, or decreasing the Fe content 

(by precipitation of Fe(OH)
3
) of water could eliminate up to 

90% of dissolved uranium isotopes.

Th e previous fi ndings of O’Brien and Cooper (1998) and 

Jimenez and De La Montana Rufo (2002) imply that radioac-

tivity accumulated in WTR because of radioactivity in the water 

source. Kleinschmidt and Akber (2008), however, studied the 

direct accumulation of elevated radioactivity concentrations 

in Al-WTR generated by the city of Brisbane in Queensland, 

Australia. Brisbane generates over 5000 Mg Al-WTR yr−1 

from raw water sources and potable-treated water, which 

meets Australian drinking water guidelines for radionuclides. 

Th e WTR generated from surface water treatment, however, 

contained elevated concentrations of 238U, 226Ra, and 210Pb as 

compared with reference soils. Th e authors concluded, via dose 

modeling, that the disposal or use of this particular Al-WTR 

could contribute to radiation dose via external gamma radia-

tion exposure. Extended occupancy times and ingestion of 

food cultivated in TENORM-enhanced soils were considered 

the most signifi cant exposure pathways. Th ese fi ndings suggest 

that one must consider the potential for WTR radionuclide 

accumulation before any benefi cial use program because this 

will limit or eliminate WTR usage.

Conclusions
Th e generation of WTR will likely increase with increasing 

population and more stringent drinking water standards; there-

fore, fi nding benefi cial WTR reuse options will become para-

mount as environmental and economic pressures limit disposal 

options (i.e., landfi lling, lagooning, and discharging to sewers). 

Th e studies outlined in this manuscript emphasize the utility 

of WTR in various environmental settings. Pros and cons of 

WTR usage (Table 2), based on the above fi ndings, should be 

considered before starting a WTR benefi cial use program.

Water treatment residual chemistries showed a reduction in 

heavy metal concentrations as compared with WTR from the 

early to mid 1990s. Th ese changes are positive, further ensur-

ing safe WTR use in benefi cial reuse programs. One must, 

however, consider the generation of WTR and its implications 

for plant metal toxicity, especially with regard to potassium 

permanganate usage and the potential for Mn toxicity to sensi-

tive crop species, such as soybean. One should also consider 

geologic materials in contact with source waters and the poten-

tial for accumulated radioactivity in WTR. After ensuring that 

WTR pose little to no metal or radioactive risk, land applica-

Table 2. Positive and negative attributes of water treatment residuals.

Positive WTR† attributes Negative WTR attributes

a. Increases soil P sorption capacity in P-enriched soils. a. Can adsorb P in P-poor soils, leading to plant P defi ciencies.

b. Sorbs P in high P-containing materials such as poultry litter, other 
manures, biosolids, waters.

b. May contain excess Mn or Na, which may be detrimental to sensitive 
plant species.

c. Sorbs As(III/V) Se(IV/VI), ClO
4

−, Hg, heavy metals.
c. May contain radionuclides depending on geologic materials in contact 

with source water.

d. May be used as a best management practice in nutrient 
sensitive ecosystems.

d. May be expensive to landfi ll depending on hauling costs, tipping 
fees, etc.

† WTR, water treatment residual.
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tors should focus concern on identifying WTR with elevated 

adsorptive properties for sequestering environmental contam-

inants (e.g., P, As, Se, ClO
4
−, and Hg) and advancing these 

concepts to develop fi eld-scale methodologies for maximized 

contaminant removal and containment.

Th e utility of WTR has been proven positive in a wide vari-

ety of environmental applications, from small-scale laboratory 

to fi eld-scale settings. Water treatment residuals are considered 

an industrial waste product in some states, and as such appre-

hension exists in terms of using this material for environmental 

enhancement. Educating water works operators, municipali-

ties, governmental offi  cials, and the general public as to the 

benefi ts, along with the relative lack of negative eff ects, will 

be the greatest hurdle to overcome before widespread WTR 

environmental usage.
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