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Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and
sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline.
The objective of this study was to examine and characterize several magnesium phosphates recovered
from actual wastewater under field conditions. Three types of particles were examined including crystal-
line magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystal-
line magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility,
and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using
“wet” chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in con-
junction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and
consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a sur-
face precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evi-
dence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline
magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. How-
ever, magnesium phosphate precipitates on calcium phosphate seed material were observed in this prod-
uct under SEM-EDS examination. These substantial variations in the macroscopic and microscopic
characteristics of magnesium phosphates recovered under field conditions could affect their potential
for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, con-
sistent product.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

for P recovery at wastewater treatment plants (WWTPs). Some
studies have examined struvite recovery from swine or dairy

Existing rock phosphate (RP) reserves are projected to last
approximately another 90 years, making the recovery and re-use
of phosphorus (P) necessary for the long-term sustainability of
agricultural production (Vaccari, 2009). In addition to agriculture,
P is used in products such as detergents, matches, grenades, and
flares. As quality RP reserves continue to decline and energy prices
rise, P recovery from various outside sources will likely become
increasingly economical (Gaterell et al., 2000). Many P recovery
efforts have focused on the precipitation of struvite (MgNH4PO,4-
6H,0) using “heterogeneous nucleation” crystallization processes,
which precipitate phosphates onto seed particles such as sand or
Ca/Mg phosphate.

Several studies (Battistoni et al., 2001, 2005; Munch and Barr,
2001; Le Corre et al., 2007) have focused on struvite as a method

* Corresponding author. Tel.: +1 970 491 1913; fax: +1 970 491 0564.
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wastewater (Bowers and Westerman 2005a,b; Zeng and Li, 2006),
or in other environments (e.g., Schuiling and Andrade, 1999; Yi
and Lo, 2003). Phosphorus recovery from manure is particularly
attractive, as it can correct manure nutrient imbalances and help
preserve water quality in agricultural areas (Greaves et al., 1999).
Off-site P movement into surface waters can cause eutrophication,
making P recovery important for reducing some environmental
impacts of agriculture (Randall, 2003).

In addition to struvite crystallization, some processes involve
the recovery of calcium (Ca) phosphates (van Dijk and Braakensiek,
1984; Driver et al., 1999; de-Bashan and Bashan, 2004). Calcium
phosphates may be more useful to the current phosphate industry,
since the presence of Mg and nitrogen (N) in struvite causes
problems in the manufacturing process (Schipper et al.,, 2001).
These issues include Mg interference during P purification in the
“wet” process, and nitrogenous emissions during heating in the
“dry” P manufacturing process. Struvite can spontaneously
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precipitate in agricultural, industrial, and municipal wastewater
systems (Webb and Ho, 1992; Buchanan et al., 1994; Doyle et al.,
2000; Doyle and Parsons, 2002; de-Bashan and Bashan, 2004),
which can be very costly in terms of downtime, cleaning, and
waste disposal (Shu et al., 2006). Struvite is regarded as being more
easily recovered than Ca phosphates, but due to its chemical
composition, the potential for struvite re-use is currently limited
to utilization as an agricultural fertilizer (Schipper et al., 2001).

Recent studies have focused on the P recovery process rather
than the uses of recovered P, though some evidence exists that
struvite might be a useful fertilizer (Bridger et al., 1962; Rothbaum
and Rohde, 1976; Lindsay, 1979; Goto, 1998; Johnston and Rich-
ards, 2003; Li and Zhao, 2003; Massey et al., 2009). Struvite has
recently been sold as a commercial product in at least one fertilizer
mixture (Ueno and Fujii, 2001).

Studies of P recovery processes tend to perform some product
characterization, including X-ray diffraction (XRD) analysis (Quin-
tana et al., 2004; Bowers and Westerman, 2005a; Le Corre et al.,
2005; Wang et al, 2005), and scanning electron microscope
(SEM) examination sometimes coupled with energy dispersive
X-ray spectroscopy (EDS; Battistoni et al., 2001, 2005; Wu and
Bishop, 2004; Wang et al., 2005; Huang et al., 2006; Le Corre
et al., 2007). These studies, however, show significant variations
in the microscopic and macroscopic features of recovered products,
even when one only considers studies which examine recovered
Mg phosphates. Furthermore, studies generally only examine the

Table 1

Mass percentages of recovered and pure phosphates, and seed material used for
Colorado product (n=3 for recovered phosphates and seed material). Standard
deviations are shown in parentheses for recovered materials. Composition of pure
substances from Bridger et al. (1962).
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surface layer of recovered product, even though most practical
recovery processes make use of heterogeneous nucleation crystal-
lization processes with seed particles. The recovered P products,
therefore, are usually physically and chemically heterogeneous,
and that heterogeneity is not always reflected in X-ray diffracto-
grams or surface precipitate EDS analysis.

The objective of the current study was to thoroughly character-
ize both the exterior and interior of recovered P products derived
from real wastewater under field conditions.

2. Methods
2.1. Recovered phosphate materials

Four recovered phosphate materials were examined: struvite
crystals manufactured in a fluidized-bed reactor at a dairy in
northern Washington as described in Bowers et al. (2007); dittma-
rite (MgNH4PO4-H,0) crystals removed from mixing paddles and
outlet valves of an anaerobic digester at a cheese processing facil-
ity; and a heterogeneous product manufactured at dairies in Colo-
rado, using the “conventional” and “new” processes described by
Massey (2008), hereafter referred to as “Colorado product”; finely
ground Ca phosphate (a mixed material containing carbonate-flu-
orapatite) and sand material, used to seed the reactor bed, were
also examined to evaluate the effects of the treatment process on
the bed material.

The Colorado product was made by precipitating magnesium and
phosphate in a pilot-scale, cone-shaped fluidized-bed reactor at a
flow rate between 410 and 456 L h~!. Given the flow rate, the waste-
water hydraulic retention time in the reactor was approximately
4 min. Precipitation was achieved by manipulating the pH of dairy
wastewater: with hydrochloric acid and gaseous ammonia in the

Material P (% by Mg (% Ca (% “conventional” process; and, with acetic acid and potassium hydrox-
mass, asP) by mass) by mass) ide in the “new” process. This induced struvite supersaturation and
Struvite (dairy wastewater) 12.30(0.2) 4.20(03) 17.9(0.9) precipitation onto a bed of finely ground seed material.
e e I 1262 (0.0) 9.91(0.0)  0.0(0.0) Wastewater was pumped from an anaerobic lagoon into the
gigﬂ:ﬁi Eifgzgl)p rocessing plant) }g‘gg 58‘8 }éég Eg‘g; 3%1( é%())) holding tank, and adjusted to an approximate pH of 5.2 by addition
Colorado product (dairy wastewater) 7.10 (0.3)0 0.41(0.01) 18.3(1.0) of acid. Ac1.d1ﬁcat10n increases the _concentration of orthophos-
Seed material for Colorado product ~ 7.94 (0.04) 0.73 (0.02) 22.2(1.0) phate (OP) in the effluent by dissolving inorganic phosphate com-
plexes already present in the wastewater. Liquid in the tank was
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Fig. 1. X-ray diffractogram of struvite crystals (JCPDF #15-0762) recovered from dairy wastewater using a fluidized-bed reactor seeded with ground calcium phosphate.
Differences from a pure struvite diffraction pattern are likely attributable to the presence of seed material such as quartz (JCPDF #46-1045).
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continuously recirculated and mixed by a small pump at its base,
and glass electrodes were used to monitor system pH. Once the
target pH was reached, acidified wastewater was pumped at a rate
of 410-456 L h~! through the manifold, where a base (either gas-
eous ammonia or KOH solution) was added to rapidly increase
the pH to between 7.5 and 8.3. This encouraged the precipitation
of phosphates as the effluent passed through the bed of seed
material.

2.2. Chemical analysis

Chemical analysis of the materials was performed at Ward Lab-
oratories, Inc. (Kearney, NE, USA). After digestion with nitric and
perchloric acid, P concentrations were measured colorimetrically
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(Padmore, 1990). Magnesium and Ca concentrations were mea-
sured according to the method outlined by Isaac (1990).

2.3. X-ray diffraction analysis

Samples of reactor seed material, struvite, dittmarite, and
Colorado product were examined using XRD analysis at the
Colorado School of Mines. The samples were examined using
powder XRD techniques and a Scintag, Inc. (USA) model 2400
X-ray diffractometer (Cu X-ray tube, fixed slits, theta-theta
design) and a scan rate of 2.00°min~!. Diffractograms were
analyzed using the software package DMSNT (Scintag, Inc.) and
the JCPDF library of diffraction patterns (International Centre for
Diffraction Data).
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Fig. 2. X-ray diffractogram of dittmarite crystals (JCPDF #20-0663) recovered from a food processing plant during cleaning.
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Fig. 3. X-ray diffractogram of Colorado product material using the “new” method. Analysis of diffractogram showed crystalline phases of quartz (sand, JCPDF #46-1045),
carbonate fluorapatite (JCPDF #31-0267), and dolomite (JCPDF #36-0426). The conventional method diffractogram was similar, but with a small, unidentified peak at low 2-
theta angle.
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2.4. Scanning electron microscopy and energy dispersive X-ray lowed to dry for >24 h prior to analysis. Samples were then ana-
spectroscopy lyzed at an accelerating voltage of either 15 or 20kV and a
working distance between 9.9 and 10.4 mm using a JEOL-JSM

Samples from the various products were sprinkled on a fine coat 6500F Thermal Assist Emission Scanning Electron Microscope

of C paint applied to a 10 x 10 mm Al stub, and the system was al- (Peabody, MA). To identify solid phase elemental associations,
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Fig. 4. X-ray diffractogram of reactor seed material used in making Colorado product. Analysis of diffractogram showed crystalline phases of quartz (sand, JCPDF #46-1045),
carbonate fluorapatite (JCPDF #31-0267), dolomite (JCPDF #36-0426), calcite, whitlockite, and traces of muscovite (JCPDF #46-1409) and illite.
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Fig. 5. Scanning electron micrograph of struvite crystals recovered from dairy wastewater by Bowers et al. (2007) using the “conventional” method. The energy dispersive X-
ray analysis of the exterior layer of a single particle showed an approximate 1:1 M ratio of Mg:P, with a molar composition of 11.78% P, 12.65% Mg, 0.38% Ca, 70.44% O, 2.18%
S, and 1.89% Fe.
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multivariate component and phase analysis was performed using
EDS with a Thermo Scientific NORAN System SIX X-ray microanal-
ysis system, equipped with a NanoTrace Si(Li) detector (Waltham,
MA).

For exterior examination and chemical characterization, parti-
cles were sprinkled on carbon paint. While this enabled the exam-
ination of the particles’ three-dimensional shape, generally only
very small particles could be analyzed using EDS, due to the limi-
tations of maintaining an electrical ground in the microscope. For
interior particle examination and chemical characterization, parti-
cles were placed in a very thin layer in the bottom of individual
0.7-cm by 1.6-cm by 1-cm deep plastic boats. Next, Acrylimet
epoxy (South Bay Technology, Inc., San Clemente, CA) was gently
poured over the samples and then cured for 24 h at room temper-
ature and approximately 138 kPa of pressure. After curing, the
epoxy-coated samples were removed from the plastic boats and
wet wheel-polished with an Exakt 400CS microgrinder (Exakt
Technologies, Inc., Oklahoma City, OK) using 1200-grit polishing
paper to expose the interior of the particles. Finally, the samples
were carbon coated in a vacuum evaporator (Kinney vacuum evap-
orator Model KDTG-3P) and analyzed as previously described.

3. Results
3.1. Chemical analysis

Struvite crystals recovered from dairy wastewater contained
larger and lesser amounts of Ca and Mg, respectively, than ideal

struvite (Table 1). Dittmarite recovered from the food processing
facility had slightly less Mg than ideal dittmarite. Other elements,

EM Center SEl

such as Fe and Al, were not measured, so the cationic constituents
of other phosphate compounds were not identified. Treatment
unexpectedly lowered the concentration of P, Mg, and Ca in the
Colorado product, relative to the seed material, due to dilution
with sand and other material from the waste storage and the treat-
ment system.

3.2. X-ray diffractograms

Samples were analyzed with XRD, and diffractograms were
compared with the JCPDF library of diffraction patterns database.
The diffractogram of the product recovered from dairy lagoon
wastewater by Bowers et al. (2007) matched well with struvite
(MgNH4P0O4-6H,0; Fig. 1), and the deposit recovered from the food
processing facility was an excellent match with dittmarite
(MgNH4PO4-H,0; Fig. 2). The “new” Colorado product (Fig. 3) and
RP seed material (Fig. 4) were heterogeneous, a mixture of quartz,
carbonate fluorapatite, calcite, and dolomite. No Mg phosphate
crystalline phases were identified in the Colorado product samples
by XRD.

3.3. SEM images

Since no crystalline Mg phosphates were identified in the Colo-
rado product analyzed by XRD, but wastewater analysis indicated
that Mg and P were being removed from the wastewater during
treatment (Massey, 2008), Colorado product samples, as well as
the other samples, were examined using SEM. The struvite crystals
recovered from dairy wastewater had a crystalline, large, and
homogeneous nature (Fig. 5). Examination of ‘“conventional”

2

200ky  X3,000

Tum ™ WD 10.4mm

Fig. 6. Scanning electron micrograph of a Colorado product particle produced using the same method as the particle in Fig. 5 (the “conventional” method). The energy
dispersive X-ray analysis showed a molar composition of 12.91% P, 9.99% Mg, 5.17% Ca, 66.18% O, 2.02% Si, and small amounts of Fe, K, and Cu. Note the small size and semi-

crystalline nature of the particle.
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method Colorado product found smaller, less crystalline particles
(Fig. 6). Though the recovery methods and setup were very similar
between the struvite crystals and Colorado product, the product
differences were striking. Examination of dittmarite crystals found
regions exhibiting a dendritic crystalline structure (Fig. 7), and
other particles (not shown) had blocky crystalline features. Parti-
cles of Mg phosphate in the Colorado product, made with the
“new” treatment process, were generally very small and irregular
in nature (Fig. 8).

3.4. EDS analysis

Energy dispersive X-ray spectroscopic analysis of the Colorado
product was important to finding non-crystalline phases of Mg
phosphates or crystalline phases in concentrations too low for
XRD identification. The EDS also yielded structural information
regarding the recovered struvite and dittmarite. The EDS interior
images of the struvite manufactured by Bowers et al. (2007)
showed Mg phosphate crystals precipitated on the Ca phosphate
seed material surface (Fig. 9a). No evidence of heterogeneous nucle-
ation (seed material) was found using EDS analysis of the crystal-
line dittmarite from the food processing plant (Fig. 9b). In Fig. 9c
and d, one can see partial coverage of the surface of several Ca phos-
phate seed particles with a Mg phosphate phase, which may or may
not be crystalline. The EDS component analysis demonstrated sev-
eral different possibilities for the form of recovered Mg phosphates:
heterogeneous nucleation with crystals completely surrounding
seed particles (Fig. 9a); homogeneous nucleation or heterogeneous
nucleation on pipe or pump surfaces rather than seed particles
(Fig. 9b); or as a crystalline or amorphous precipitates partially cov-
ering seed materials (Fig. 9c and d). Precipitated Mg phosphates

1 )

EM Center SEl

15.0kV  X25000  1um

were only observed on Ca phosphate seeds, rather than Si oxide
seeds, in the Colorado product materials. However, this does not
preclude the presence of Mg phosphate precipitates on Si oxide
mineral phases in these samples. Such a case was simply not ob-
served during SEM-EDS examination.

4. Discussion

Along with the fine Mg phosphate particles in Figs. 6 and 8, the
Mg phosphate precipitates depicted in Fig. 9c and d provide micro-
scopic evidence that helps explain the macroscopic performance of
the treatment process. Magnesium and P were removed in the
reactor as Mg phosphate precipitates, either as fine Mg phosphate
particles formed by homogeneous nucleation, or a surface precipi-
tate on a seed particle, formed by heterogeneous nucleation. How-
ever, the Mg phosphate phases were neither regular nor did they
completely cover the seed material, as in the large, physically
homogeneous material depicted in Figs. 5 and 9a.

4.1. Formation of the different materials

The physical and chemical differences between materials can be
linked to the conditions of their formation. Stratful et al. (2001)
found that increased retention time was associated with larger
recovered crystals. This was especially true for complex wastewa-
ter matrices, where organic matter or other ions could interfere
with crystallization by blocking crystal growth sites and delaying
crystal formation (Schuiling and Andrade, 1999; Valsami-Jones,
2001; van der Houwen and Valsami-Jones, 2001; Le Corre et al.,
2005). The crystalline struvite precipitated by heterogeneous
nucleation on Ca phosphate seed particles by Bowers et al.

WD 9.9mm

Fig. 7. Scanning electron micrograph of a small region of dittmarite crystals recovered from a food processing facility. This region is notable for its dendritic (“tree-like”)
crystalline structure. The energy dispersive X-ray analysis showed a molar composition of 18.55% P, 16.86% Mg, 63.57% O, and 1.02% Fe.
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Fig. 8. Scanning electron micrograph of a small Mg phosphate particle found during examination of the “new method” Colorado product samples. The energy dispersive X-
ray analysis showed a molar composition of 16.40% P, 16.40% Mg, 64.86% O, and traces of Fe, Al, Si, and Ca.

(2007) was an example of the application of a P recovery process
on a field-scale. Particles were relatively large and were homoge-
neous in size, external and internal structure. Experimental
evidence suggests that, in order to achieve this, chemical condi-
tions, physical conditions, and retention time must be adequate
for crystals to grow to a sufficient size.

The Colorado product particles showed a combination of homo-
geneous nucleation resulting in the formation of fine particles
(Figs. 6 and 8), and seed particles incompletely covered by precip-
itate (Fig. 9c and d). These Mg phosphates cannot be confirmed as
struvite by the methods of this study, but ammonia removal was
observed in the water treatment process (Massey, 2008). Addition-
ally, Babic-Ivancic et al. (2006) found that struvite, rather than
newberyite (MgHPO4-3H,0), formed at a higher pH and high
ammonium phosphate concentration, such as the concentrations
and pH measured by Massey (2008). Thus, strong evidence sup-
ports the contention that Mg phosphates observed in the Colorado
product were Mg ammonium phosphates, rather than Mg phos-
phates, such as newberyite.

Regardless of which Mg phosphate phase formed in the reactor,
with a longer retention time such as used in the current study (i.e.
4 min), the fine particles could have become larger crystals just as
the layer of Mg phosphate precipitate (Fig. 9c and d) could have
grown, if conditions were more conducive. Short retention times,
excessive mixing velocities in the reactor, and interference from
ions and organic ligands might have influenced product formation
with these irregular characteristics, as others (Bowers et al., 2007;
van der Houwen and Valsami-Jones, 2001) have observed.

A further difficulty stemming from the field-scale nature of this
study was that sand was most likely swept up into the crystal bed
in the Colorado product, diluting the useful nutrients in the recov-

ered material and possibly reducing the effectiveness of the reac-
tor. Wang et al. (2006) noted that the effectiveness of struvite
powder was greater than that of sand as a seed material. The pres-
ence of Mg phosphate precipitate on Ca phosphate seed material,
but not on sand (Fig. 9c¢), supports the contention that Mg phos-
phates preferentially precipitated onto the surface of other phos-
phates over that of sand grains.

The crystalline dittmarite was unique in this study, in that it
was not recovered from an engineered P recovery process, but
rather as a true waste product from the cleaning of an industrial
facility. Le Corre (2006) provided an excellent review of locations
and conditions likely to cause scaling in wastewater treatment.
These conditions include high concentrations of the component
ions of struvite and a motivating force for precipitation, such as
pH change associated with turbulence in pumps and turns in pipes.
Dittmarite could have formed as a result of high temperatures,
either during operation or cleaning; Sarkar (1991) and Bhuiyan
et al. (2008) found that struvite loses five of its water molecules
when boiled with excess water, becoming dittmarite. Crystal
growth likely began through heterogeneous nucleation on pipe
or pump surfaces, and high temperature water (either during nor-
mal operation or cleaning) made conditions ideal for the monohy-
drate, rather than hexahydrate, crystal.

4.2. Practical implications of material characteristics

The most common use usually suggested for recovered struvite
is as an agricultural fertilizer, although stream rehabilitation is also
a possible end use (Sterling et al., 2000). Le Corre et al. (2007) iden-
tified the size, purity, and morphology of recovered materials as
critical factors in the materials’ successful recovery and re-use as
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B 100 um

C 50 um

D 25 um

Fig. 9. Energy dispersive X-ray component analysis of the interior of recovered struvite crystals. Calcium phosphate seed material is shown in magenta, Mg phosphate
crystals are shown in yellow, and silicon oxides (sand) are shown in cyan. (A) Recovered struvite, (B) recovered dittmarite, (C) “new” method particles demonstrating
preferential precipitation of Mg phosphate layer on Ca phosphate seed, (D) detail of “new” method particle showing Mg phosphate precipitate. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

fertilizer. All of the materials examined in this study were easily
handled, but the quantity and form of useful nutrients varied
greatly among materials. Only one material examined in this study,
dittmarite, was relatively pure. The crystalline struvite was pure,
but the seed material was also a major component of the recovered
material. The Colorado product contained substantial amounts of
sand, and no crystalline Mg phosphate was identified by XRD. Stru-
vite and dittmarite both showed regular morphology, but the form
of Mg phosphate in the Colorado product was unclear. These vari-
ations may limit some recovered P materials’ potential for use as a
fertilizer.

Several authors (Bridger et al., 1962; Sarkar, 1991; Bhuiyan
et al., 2008) noted that dittmarite gradually re-hydrates to struvite
at environmentally relevant temperatures and in the presence of
water. Dittmarite is a more economical form of P to transport since
it has a greater P concentration, but difficulties in manufacturing or
differences in solubility and dissolution kinetics could ultimately
impact its usefulness as a P fertilizer. Indeed, at present, no engi-
neered process exists for its recovery, limiting the practical viabil-
ity of dittmarite crystals as fertilizer.

More importantly, material differences could affect their fertil-
izer effectiveness. Although chemically identical, different struvite
morphologies, including dendritic and rod-like crystals, have been
shown to have different dissolution kinetics linked to differences in

surface area (Babic-Ivancic et al., 2002). Chemical differences, such
as the Mg phosphate layer surrounding the Ca phosphate seed
material shown in Fig. 9a, may also affect solubility and phospho-
rus availability over time as the materials dissolve in soil solution.

Though the solubility of amorphous Mg phosphate materials
has not been studied, Valsami-Jones (2001) noted that amorphous
Ca phosphates were generally more soluble than crystalline forms;
Bauer et al. (2007) found recovered amorphous Ca phosphate to be
an effective fertilizer in a greenhouse study. Similarly, Mg phos-
phates such as those observed in the Colorado product samples
may be more plant-available than crystalline forms. Lindsay
(1979) stated that Mg phosphates can be discounted as permanent
P fixation products in soils, and thus Mg phosphates should consti-
tute useful fertilizers for supplying readily plant-available P.

5. Conclusions

Most P recovery research, to date, has focused on the wastewa-
ter treatment phase of P recovery and re-use, with findings show-
ing that products may or may not be chemically or physically
desirable as a potential P fertilizer. Even if macroscopic analysis
indicated the presence of Mg phosphates, the microscopic and
chemical properties of actual recovered Mg phosphate materials
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could vary quite widely. These microscopic and chemical proper-
ties could have a significant impact on the potential for beneficial
re-use of the product.

In this study, both the exterior and interior of recovered P prod-
ucts made from real wastewater, under field conditions, were char-
acterized. X-ray diffraction analysis identified crystalline struvite
in a product recovered from dairy wastewater, and dittmarite in
a material from a food processing plant, but could not identify
crystalline Mg phosphates in a third sample, the Colorado product,
also from dairy wastewater. Wastewater analysis, however, sug-
gested that Mg phosphates were precipitating onto the Colorado
product sample, which SEM-EDS examination confirmed. The
SEM-EDS analysis also clearly showed chemical and physical dif-
ferences in all of the recovered materials. These differences may af-
fect the eventual usefulness of the recovered P materials as
fertilizers, underscoring the importance of microscopic examina-
tion and consistent product characteristics in any commercially
viable recovered P fertilizers eventually developed.
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