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Abstract: Dairy manure increases the yields of dry bean (Phaseolus vulgaris L.) and

spring wheat (Triticum aestivum L.) from eroded, furrow-irrigated soils and may

increase corn (Zea mays L.) silage yield from steeper eroded areas under sprinkler irri-

gation. In a 2-year field study in southern Idaho on Portneuf silt loam (coarse silty,

mixed, superactive, mesic Durinodic Xeric Haplocalcid), the effects of a one-time,

fall application of 29 or 72 Mg ha21 of dry manure or 22 or 47 Mg ha21 of dry

compost on subsequent silage yield and nitrogen (N) uptake from previously eroded,

sprinkler-irrigated hill slopes were evaluated. In October 1999, stockpiled or

composted dairy manure was disked to a depth of 0.15 m into plots with slopes from

0.8 to 4.4%. After planting field corn in 2000 and 2001, a low-pressure, six-span

traveling lateral sprinkler system was utilized to apply water at 28 mm h21 in

amounts sufficient to satisfy evapotranspiration to 6.4- � 36.6-m field plots. Yields

in 2000 were 27.5 Mg ha21, similar among all rates of all amendments and a fertilized

control. In 2001, compost applied at oven-dry rates up to 47 Mg ha21 increased yield

compared to controls. Silage yield in 2001 increased initially then decreased with

increasing manure applications. Where compost or manure was applied, regardless

of rate, 2-year average N uptake was 15% greater than controls. Regardless of

treatment or year, yields decreased linearly as soil slope increased.
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INTRODUCTION

Approximately 45.4 million Mg of manure were produced annually in the mid

1990s by dairy and beef cattle, Bos sp. (Walker, southworth, and Rubin 1997,

cited by Edwards and Someshwar 2000). In Idaho, the livestock industry has

expanded rapidly, with the waste generated becoming a concern. Statewide,

Idaho’s dairy and beef cattle produce more than 4.5 million Mg of air-dry

manure annually (A. A. Araji, 2005, personal communication). About 70% of

the state’s dairy cows and 30% of the beef cattle are in southcentral Idaho.

The growth of the dairy industry in southern Idaho to supply milk for cheese

production has significantly increased manure production. The cattle in

southern Idaho alone produce more than 2.2 million Mg of air-dry manure

annually. The characteristics and beneficial uses of many different manures

were reviewed recently (Edwards and Someshwar 2000; Sumner 2000).

In the intermountain region of the Pacific northwest, much of the manure

produced becomes compost. Compost refers to organic constituents, usually

wastes, that have been mixed, piled, and moistened and undergo thermophilic

decomposition that alters or decomposes the original organic materials (Soil

Science Society of America 1997). To ease waste disposal, many local

dairy owners compost manure, then recycle the compost as bedding for

their cows. In many areas, landscapers, home gardeners, horticulturalists,

and others prize compost (Richard 2005). DeLuca and DeLuca (1997)

compared the nitrogen (N), phosphorus (P), and potassium (K) concentrations

in composted manure with fresh manure and feedlot manure. The compost,

and the processes used to produce it, have been described in detail (Richard

2005, Keener et al. 2000).

Organic amendments are often applied to soils to increase crop pro-

ductivity, crop quality, or both (Bresson et al. 2001; Edmeades 2003; Risse

et al. 2001). Compared to noneroded soils, dairy manure applications

increased yields of dry bean and spring wheat from eroded soils on a 1.1%

slope in southern Idaho and may increase yields of other crops as well

(Robbins, Freeborn, and Mackey 1997; Tarkalson et al. 1998). Fall-applied

manure and compost increased corn grain yield and biomass at tasseling for

two growing seasons after being applied (Eghball, Ginting, and Gilley

2004). Dairy manure applications increased corn silage yields and soil

nitrate (NO3)-N in an Enosburg fine sandy loam (Mollic Haplaquent) in pro-

portion to the application rate (Jokela 1992).

Manure increases soil fertility. In the short-term manure stimulates

microbial activity that improves soil structure and in the long-term supplies

NO3-N and ammonium (NH4)-N to aid crop production (Edwards and

Someshwar 2000; Sumner 2000). In a review of literature, Loveland and

Webb (2003) noted that annual manure applications may increase yields,

even where fertilizer is applied, possibly because of increases in soil

organic carbon or available water. Increased available water may have

played a role, given that Arriaga and Lowery (2003) found that annual

G. A. Lehrsch and D. C. Kincaid2132
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manure applications increased water retention proportionally more on eroded

than noneroded sites. They attributed the increased yields where manure was

applied to greater water retention in amended soils. Manure applications may

also increase the productivity of soils degraded by erosion from irrigation or

rainfall (Arriaga and Lowery 2003; Carter 1990). Compost and fresh manure

provide similar benefits for both crop production and soil management, along

with others as well. Compared to manure, compost contains few viable weed

seeds, less water, and occupies 30 to 60% less volume, thus decreasing trans-

portation costs (Richard 2005). Organic amendments also stimulate microbes

to produce polysaccharides and other exudates that increase aggregate

stability (Lehrsch 1995; Lehrsch et al. 1991). Stable aggregates at and near

the soil surface resist breakdown from raindrop or sprinkler droplet kinetic

energy and sustain infiltration rates (Lehrsch and Kincaid 2001; 2006).

Caution must be exercised, however, when applying large quantities of

organic amendments to soil (Amlinger et al. 2003; Edwards and Someshwar

2000). Depending upon the proportion of monovalent cations, principally

Kþ and sodium (Naþ), to divalent cations in the waste, additions on the

order of 100 Mg ha21 or more can disperse aggregates and destroy surface

soil structure, reducing both infiltration and hydraulic conductivity as a con-

sequence (Haynes and Naidu 1998; Lehrsch and Kincaid 2001; Tiarks,

Mazurak, and Chesnin 1974). If the added amendments contain large pro-

portions of straw, high in C but low in N, soil N may be immobilized

(Brown 1988).

Manure from cattle feedlots can contain high concentrations of soluble

salts, principally sodium chloride. If applied at high rates in arid or semi-

arid areas, manure can increase salinity sufficiently to hinder the germination

of salt-sensitive crops (Eghball, Ginting, and Gilley 2004; Haynes and Naidu

1998; Sumner 2000). Ammonium ions, added with manure or formed as

organic N compounds are mineralized, will react with water in calcareous

soils to form ammonia that, if present in sufficiently high concentrations,

will be toxic to germinating seeds and seedlings (Robbins and Gavlak 1989;

Tisdale and Nelson 1975). Hao and Chang (2003) reported that annual appli-

cations of cattle feedlot manure to an irrigated clay loam in semi-arid southern

Alberta increased the electrical conductivity of a saturated paste extract, ECe.

Soluble Naþ, Kþ, magnesium (Mg2þ), chloride (Cl2), bicarbonate (HCO3
2),

and sodium adsorption ratio (SAR) all increased with fall manure applications

ranging from 60 to 180 Mg ha21. Potassium became the dominant cation on

the exchange complex where manure was applied. Hao and Chang (2003)

concluded that high manure application rates were not sustainable, leading

to salinization without irrigation and possible groundwater contamination

with irrigation.

Sustainable crop production in the western United States is made difficult

not only by possible soluble salt accumulation but also by problems inherent

with irrigating sloping fields. Many previously furrow irrigated fields with

medium-textured soils have eroded areas with reduced infiltration capacity

Compost and Manure Effects on Silage Yield 2133
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and/or low fertility (Carter 1990; Rasmussen and Cary 1979). Furrow

irrigation–induced erosion from slopes ,2% is generally not serious if the

flow rate is carefully controlled (Carter 1990). Under the outer spans of

center pivot irrigation systems, however, one is less able to control runoff

and erosion, particularly from slopes �2.5% (Lehrsch, Bjorneberg, and

Sojka 2005; Lehrsch and Kincaid 2005). Though center pivot systems are

becoming common in the Pacific Northwest because of their low labor

requirement and capability to irrigate large fields with rolling topography,

they tend to produce runoff due to high application rates inherent with

traveling lateral systems (Kincaid 2005).

Runoff also erodes soil (Lehrsch, Bjorneberg, and Sojka 2005). After

topsoil is eroded by runoff from irrigation, moldboard plowing or disking

commonly mixes less fertile, poorly structured subsoil into the Ap horizon,

with the proportion of subsoil increasing as erosion increases (Carter 1990).

Compared to Portneuf silt loam topsoil, subsoil has half as much organic C,

a higher pH, and three times as much calcium carbonate (CaCO3) (Robbins,

Freeborn, and Mackey 1997). Subsoil also hinders root growth and requires

much more P fertilizer to reach adequate levels for crop production

(Rasmussen and Cary 1979). Corn growth and development are hindered

where topsoil has been eroded by irrigation (Carter 1990).

This research was part of a larger investigation in which amendment

effects on runoff, sediment loss, soil structure, nutrient losses in runoff, and

to a lesser degree silage yield from sloping field areas were studied. In the

research reported here, the effects of stockpiled or composted dairy manure,

each at two rates, on corn silage yield and N uptake from sprinkler irrigated

plots with slopes from 0.8 to 4.4% were determined.

MATERIALS AND METHODS

The experiment was conducted for 2 years on structurally unstable Portneuf

silt loam about 2.1 km southwest of Kimberly, ID (428 31’N, 1148 22’W,

and elevation of 1190 m). The Portneuf’s Ap horizon contained about

560 g silt kg21, 220 g clay kg21, pH (in a saturated paste) of 7.7, an ECe of

1.1 dS m21, 75 g CaCO3 equivalent kg21, and about 9.3 g kg21 of organic

carbon (C). Though the Portneuf’s underlying Bk horizon was similar in

many respects, it commonly contained nearly three times as much CaCO3

and half as much organic C. Other properties of a nearby Portneuf pedon

were given by Lehrsch, Sojka, and Westermann (2000). After harvesting

wheat in August 1999, the stubble was chopped and disked on 14–15

September 1999 before the amendments were applied.

Treatments consisted of two amendments, compost and manure, each

applied air dry at a medium and high rate, along with an unamended but ferti-

lized control that was duplicated in each block. Compost was applied once at

an equivalent oven-dry rate of 22 or 47 Mg ha21, whereas the manure was

G. A. Lehrsch and D. C. Kincaid2134
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applied once at an oven-dry rate of 29 or 72 Mg ha21. The medium and high

rates for each amendment were chosen based upon supplying mineral N as fer-

tilizer in moderate and in excessive amounts, respectively. Because the

primary purpose of the larger investigation was to evaluate compost and

manure effects on runoff, sediment loss, soil structure, and runoff nutrient

losses, an unfertilized check was not included.

Each of the four amendment treatments and the duplicated control were

randomly assigned to one of the six, 6.4-m-wide by 36.6-m-long plots

under each of the six spans of the irrigation system (described later). After har-

vesting wheat (Triticum aestivum L.) in August 1999, the stubble was chopped

and disked on 14–15 September 1999. On 14 October 1999, the amendments

were applied in a broadcast manner with an 18-Mg truck equipped as a manure

spreader. Amendment application rates were measured using a 2.24-m-wide

by 1.70-m-long tarp placed across each plot. The spreader passed repeatedly

across a plot until that plot had received its nominal allotment of either

compost or manure. After applying 23 mm of water with a traveling lateral

sprinkler system (described later) the next day, the amendments were incor-

porated on 18–19 October 1999 by disking the entire area to a depth of

0.15 m three times in two directions.

When the amendments were applied, three samples of compost and five

samples of manure were collected for chemical characterization. For collec-

tion, the material on a tarp was mixed, then sampled. At the laboratory, a

subsample was removed to determine dry-matter content, and then the

remainder was immediately air dried at about 308C in a forced-air drying

cabinet. The air-dry material was stored at room temperature until, just

before analysis, it was ground in a Wiley1 mill to pass an 865-mm stainless

steel screen. On each ground sample, pH (Wolf 2003b), electrical conductivity

(EC) (Wolf 2003a), and total C and N by the combustion of a 25-mg sample in

a Thermo-Finnigan FlashEA1112 CNS analyzer (CE Elantech Inc.,

Lakewood, N.J.) were determined. An automated flow injection analyzer

was utilized to colorimetrically determine each sample’s NO3-N concentration

after cadmium reduction of a potassium chloride (KCl) extract (method 12-

107-04-1-B, Lachat Instruments, Loveland, Col) and NH4-N concentration

using a salicylate-hypochlorite method (method 12-107-06-2-A, Lachat

Instruments, Loveland, Col).

On 21 April 2000 before planting, soil samples were collected to a depth

of 0.3 m from the controls and analyzed for phosphorus (P), K, and zinc (Zn).

Upon analysis, the macronutrient concentrations were 7 mg P kg21 and

110 mg K kg21. The soil’s Zn concentration was adequate to produce corn,

Zea mays L. (Brown and Westermann 1988). After tilling the site with an

offset disk to a depth of 0.15 m on 28 April and again on 2 May, soil

samples were collected to 0.3 m from every plot of the study. Thereafter,

1Manufacturer or trade names are included for the readers’ benefit. The USDA-ARS

neither endorses nor recommends such products.

Compost and Manure Effects on Silage Yield 2135
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fertilizer was broadcast applied (202 kg N ha21, 98 kg P ha21, and

139 kg K ha21) equally to all plots per University of Idaho soil-test rec-

ommendations for irrigated field corn (Brown and Westermann 1988). All fer-

tilizer was incorporated by roller-harrowing to 65 mm. Pioneer 3751 corn, a

cultivar adapted best for silage production, was planted at a depth of 51 mm

to a nominal plant population of 68,900 plants ha21 on 12 May into 0.76-m

rows oriented perpendicular to the irrigation system lateral (described later).

Subsequent cultivation produced small furrows between adjacent corn rows

that directed runoff downslope. Each plot’s long axis was perpendicular to

the irrigation lateral. Plot slopes faced south and ranged from 0.8 to 4.4%,

increasing gradually, in general, from span 1 to 6. Plants from 3.05 m of an

interior row about 12 m upslope from the downslope plot border and

another 3.05 m of row about 24 m upslope from the same border in late

September, were hand-harvested for silage yield and N uptake. Subsamples

of the harvested silage were weighed, dried at 608C, and then weighed

again. Dry silage was ground in a Wiley mill to pass a 380-mm stainless

steel screen. Thereafter, its total N concentration was determined from a 25-

mg sample in the CNS analyzer described previously. Yields and N uptake

from the two rows were averaged prior to statistical analysis. In 2001, field

operations and timing were similar. All plots were disked to 0.15 m twice

in the spring. On 25 April, 101 kg N ha21 (as urea, 0.45 kg N kg21) and

98 kg P ha21 were broadcast onto the entire study site, then incorporated

with a roller harrow prior to planting corn on 9 May. In both 2000 and

2001, standard cultural practices were employed to control insects and

weeds (Brown and Westermann 1988). Despite efforts, yields in 2001 were

reduced somewhat by green foxtail, Setaria viridis (L.) P. Beauv.

All plots were irrigated using a 247-m, six-span traveling lateral

sprinkler system equipped with spray heads having spinning, six-groove

deflector plates and 138-kPa pressure regulators. The sprinklers were

mounted 2.4 m above the soil surface and 3.05 m apart. Spray pattern

width was about 16 m, resulting in an average application rate of about

28 mm h21 (Kincaid 2005) and a peak rate of 40 mm h21 where sprinkler

patterns overlapped along the lateral. Automatic valves controlled the flow

to each span. The lateral’s discharge rate was 7.45 L (min m)21, representa-

tive of middle spans of a typical center pivot lateral in southern Idaho. On

average, corn was irrigated two to three times per week in amounts sufficient

to replace calculated evapotranspiration. Spans 1 to 5 received the same gross

water application. Slightly less water was applied to steeper plots, particu-

larly those in span 6, on only six days in 2000 and two in 2001, when

runoff was measured. Each season, those plots received about 8% less

water than the remaining plots. To spans 1 through 5, a total of 480 mm of

water in 2000 and 530 mm in 2001 was applied. The irrigation water,

withdrawn from the Snake River, commonly has a pH of 8.2, an EC of

0.5 dS m–1, and SAR of 0.65. For most irrigations each year, the lateral

traveled uphill.

G. A. Lehrsch and D. C. Kincaid2136
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The experimental design was a randomized complete block with one block

under each of the six spans of the irrigation system. Before performing an

analysis of variance (ANOVA), the relationship between each response

variable’s mean and standard deviation (SD) was examined to ensure that no

transformation was needed to stabilize the variable’s error variance before

analysis. An ANOVA was performed using mixed-model procedures and a sig-

nificance probability of 5%, for the most part (SAS Institute Inc. 1999).

Random factors were span, span � year, span � treatment, and span � year �

treatment. When each amendment was analyzed separately, random factors

were span, span � year, span � rate, and span � year � rate. In the ANOVA

for each amendment, contrasts were used to test for linear and quadratic (curvi-

linear) trends in yield response to increasing application rate each year. For the

most complex trend found significant, a regression equation was fitted to the

data. When the equation was curvilinear, the quadratic equation’s first derivative

was set equal to zero and solved for the amendment’s application rate that

maximized silage yield. Yield variation accounted for by the blocking factor

span was included in each regression model’s sum of squares by including span

as a class variable in the fitted model, thus giving a more accurate R2 estimate.

RESULTS AND DISCUSSION

Amendment Properties

The compost and manure that was applied were similar, in general, to that

common in the area (Table 1). There were, however, three exceptions. The

total N concentration of the compost was somewhat lower than the common

16.3 g N kg21 in compost. The compost EC was 1.9 times the local

Table 1. Properties of the compost and manure (all measurements on a dry-weight

basis)

Compost (n ¼ 3) Manure (n ¼ 5)

Amendment property Mean SDa Mean SD

pH 9.26 0.03 8.6 0.5

Total C (g kg21) 111 11 289 22

Total N (g kg21) 11.7 1.0 21.2 1.5

NO3-N (mg kg21) 940 140 120 60

NH4-N (mg kg21) 85 5 326 20

C:N Ratio 9.5 0.2 13.6 0.2

Electrical conduc-

tivity (dS m21)

10.9 1.0 11 2

aSD ¼ standard deviation.

Compost and Manure Effects on Silage Yield 2137
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compost average, 5.6 dS m21, whereas the manure EC was 1.5 times the local

manure average, 7.2 dS m21 (Lehrsch, unpublished). Each amendment’s EC,

however, was well within two standard deviations of its local average. As

expected, the compost contained more NO3-N and less NH4-N than the

manure. When applied, the dry-matter content was 0.71 kg kg21 for

compost and 0.53 kg kg21 for manure. The manure’s dry-matter content

confirms that the material was stockpiled, rather than freshly scraped from a

feedlot’s surface, prior to application.

The N added in the medium and high rates of each amendment are shown

in Table 2. The standard deviations reveal the variability inherent in estimat-

ing the N applied in these agricultural by-products (Risse et al. 2001). The

greatest portion by far of the total plant-available N added in each

amendment was the estimated, first-year mineralized N, being 68% for

compost and 95% for manure. In total, the medium manure treatment added

3.9 times more N than the medium compost treatment, whereas the high

manure treatment added 4.7 times more N than the high compost treatment.

Silage Yield

The ANOVA’s year � treatment interaction was not significant at P ¼ 0.05

but was at P , 0.078. Moreover, a single degree-of-freedom comparison

Table 2. Amendments applied with the plant-available N added in each for the first

year

Application rate

(dry material)

Mg ha21

Nitrogen addedb (kg ha21)

Amendmenta Treatment NO3-N NH4-N Min-Nc Total

None None 0 0.0 0.0 0 0

Compost Medium 22 21.1 (3.1) 1.9 (0.1) 50 73

Compost High 47 44.3 (6.5) 4.0 (0.3) 100 148

Manure Medium 29 3.6 (1.8) 9.5 (0.6) 270 283

Manure High 72 8.9 (4.5) 23.4 (1.5) 670 702

aAs applied, the compost was 0.71 kg dry matter kg21 and the manure was 0.53 kg

dry matter kg21.
bThe NO3-N and NH4-N contents were determined on three samples of compost and

five samples of manure collected when applied. Figures in parentheses are standard

deviations.
cAn estimate, based upon each amendment’s total N concentration, of the N miner-

alized in the 12 months after the amendment was applied. Total N averaged

11.7 g kg21 in compost and 21.2 g kg21 in manure (Table 1). We assumed that the

N mineralized in the first year was 200 g kg21 from compost and 450 g kg21 from

manure (DeLuca and DeLuca 1997; Moffitt 1992; Richard 2005).

G. A. Lehrsch and D. C. Kincaid2138
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found that, averaged across medium and high rates, compost effects differed

(P , 0.006) from manure effects in 2001. In addition, the 146 mm of precipi-

tation in the first winter (November 1999 through April 2000) after

amendment application were 30% greater than the precipitation in the

second winter (November 2000 through April 2001). These factors led to

the need to investigate amendment effects each year, particularly in view of

the pre-planned analyses of trends in silage yield response to increasing

amendment rates.

Though each rate of manure added much more N than each rate of

compost, 2000 yields differed little (Figure 1). Moreover, there was little

difference in 2000 silage yields between rates for each amendment. Yields

in 2000 from all treatments, including the fertilized control, averaged

27.5 Mg ha21. Compared to the fertilized control, compost on average

increased yields by 8% and manure by 9%, though neither increase was sig-

nificant at P ¼ 0.05. These increases were apparently in response to the

amendments applied the preceding fall (Table 2).

In 2000, compost treatments tended to yield more silage than the control

(Figure 1). That tendency continued and strengthened the succeeding year.

Yield from each of the compost treatments in the second year after application

exceeded that of the fertilized control by about 4 Mg ha21, significant at

P ¼ 0.051 for the medium treatment and at P ¼ 0.045 for the high. In

contrast, neither manure rate affected silage yield in 2001. In fact, the high

Figure 1. Compost and manure rate effects on silage yield in 2000 and 2001. Within

amendments each year, means with a common letter are not significantly different

according to t tests of pairwise differences at P ¼ 0.05. Data from controls are

shown twice each year to facilitate comparison with each amendment. Each mean

(n ¼ 12 for controls, else n ¼ 6) is shown with its 95% confidence interval.

Compost and Manure Effects on Silage Yield 2139
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manure rate, 72 Mg ha21, tended to decrease silage yield, compared to the

control.

Though the 2001 yields from the medium and high compost treatments

did not differ from one another, the corresponding yields from the manure

treatments did (Figure 1). For the manure, the 72 Mg ha21 treatment

yielded less (P , 0.013) than the 29 Mg ha21 treatment. Perhaps the

additional straw added in the high manure treatment led to continued

microbial immobilization of available soil N that reduced silage yield

(Brown 1988). Another possible explanation is that reduced arbuscular mycor-

rhizal fungi colonization of the corn as a consequence of the additional

nutrients added with the high manure rate may have reduced yields

(Tarkalson et al. 1998). Larney et al. (2000), in contrast, found that

75 Mg manure ha21 restored productivity on simulated eroded areas, though

for spring wheat rather than corn silage and grown under predominantly

dryland rather than irrigated conditions. In this study, the silage yield from

the high manure treatment in 2001 was less than (P , 0.001) that from the

high compost treatment in 2001. This was surprising, given that all plots of

the study received a uniform application of conventional N and P fertilizer

on 25 April 2001 prior to planting.

Silage yield in 2001 responded in a quadratic manner (P , 0.005) to

increasing manure rates (Figure 2). Indeed, data shown in Figure 1 reveal that

the yield response to manure in 2000, the first growing season after application,

was also curvilinear, though not significant at P , 0.05. One might speculate

that soluble salts were responsible for the 2001 yield decrease where

Figure 2. Manure effects on silage yield in 2001. Each mean (n ¼ 12 for controls,

else n ¼ 6) is shown with its 95% confidence interval. The reported R2 is that found

after including yield variation accounted for by the blocking factor span in the fitted

model’s sum of squares.
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72 Mg manure ha21 were applied. Based upon the amendments’ EC values,

however, the loads of soluble salts (as total dissolved solids) added directly in

the compost and manure were not great. The medium rate added 0.32 Mg

soluble salts ha21 in compost and 0.83 Mg ha21 in manure. The high rate

added 0.68 Mg ha21 in compost and 2.06 Mg ha21 in manure. Portneuf silt

loam under irrigation typically contains about 0.54 Mg soluble salts ha21 in

the upper 0.15 m where no amendments have been applied. Salt added with

the high manure treatment, in the absence of leaching, could have hindered

the yield of some salt-sensitive crops, such as dry bean (Phaseolus vulgaris

L.), if planted shortly after amendment incorporation. In this experiment,

however, 2001 yield decreases from soluble salt loads were unlikely because

corn was planted, a more salt-tolerant crop than dry bean. Moreover, soluble

salts were surely leached from the seeding depth by 1) the 23-mm irrigation

one day after applying the amendments in fall 1999, 2) precipitation in the

winters of 1999–2000 and 2000–2001, and 3) percolation during the 2000

growing season (Wright, Westermann, and Lehrsch 1998).

Decreased infiltration is not responsible for yield decreases shown in

Figure 2 because a preliminary analysis of runoff (not reported) suggested

that infiltration increased slightly with increasing manure rates as

Rasmussen and Cary (1979) speculated. Increased infiltration, with

attendant leaching of NO3-N, however, could explain the decrease in yield

at high manure application rates if the corn was N deficient but no

symptoms of N deficiency were observed. Robbins, Freeborn, and Mackey

(1997), 3 years after applying fresh manure to the same soil near the exper-

imental site, found that manure increased dry bean yields compared to those

from nonmanured plots. However, they applied manure at a greater (air-dry)

rate, 137 Mg ha21, in a split application with 44 Mg ha21 applied in the

spring and the balance in the fall.

Compared to medium or more moderate rates, high rates of either

compost or manure did not increase yields, and in some cases, decreased

them (Figures 1 and 2). Where excessive rates of compost or manure are

applied to produce crops, dispose of agricultural by-products, or both,

caution should be exercised not only because of yield reductions but also

because of nutrient-use inefficiencies and possible contamination of both

surface and groundwater.

Nitrogen Uptake

Both compost and manure significantly increased 2-year average N uptake by

corn silage (Figure 3). Wherever compost or manure was applied, regardless

of rate, N uptake averaged 230 kg ha21, 15% more than controls. Uptake did

not differ between amendments or rates. The fact that similar amounts of N

were taken up is somewhat surprising given that the amendments added from
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73 to 702 kg ha21 of plant-available N in the first year, a ten-fold range

(Table 2). Uptake efficiency obviously decreased as application rate increased.

As expected, more N was taken up (significant at P ¼ 0.029) in the first

year after amendment application, compared to the second year (not shown).

In 2000, all treatments including controls took up an average of 245 kg N ha21

but only 203 kg N ha21 1 year later. Decreased uptake in the second year was

likely a consequence of 1) less N available because some had been removed in

the silage the year before, 2) less N mineralized from the amendments’ organic

matter (Moffitt 1992), and 3) possible N leaching losses during the first year’s

growing season and subsequent nongrowing season (Liang, Remillard, and

Mackenzie 1991; Wright, Westermann, and Lehrsch 1998).

A single degree-of-freedom comparison of 2001 data revealed, however,

that corn growing in compost-amended plots took up 225 kg N ha21, nearly

17% more (significant at P ¼ 0.022) than in manure-amended plots. This

finding is in part a consequence of the relatively low silage yield from the

manure-amended plots in 2001 (Figure 1). Greater uptake in 2001 from

compost-treated than manure-treated plots could also be attributed to the

slower but steadier mineralization of N from the more recalcitrant organic

matter added in the compost. Also, soil and fertilizer N may have been

immobilized in microbial tissues as a consequence of the straw added in the

manure, particularly for the low-yielding, high manure treatment in 2001

(Figure 1), rendering the N unavailable for uptake. Compared to compost,

manure had a C:N ratio 43% greater and 2.6 times as much total C

Figure 3. Nitrogen uptake affected by amendment and rate. Data are averaged across

years. Means with a common letter are not significantly different according to t tests of

pairwise differences at P ¼ 0.05, with one exception. N uptake from 72 Mg manure

ha21 differed at P ¼ 0.057 from the control. Data from controls are shown twice to

facilitate comparison with each amendment. Each mean (n ¼ 24 for controls, else

n ¼ 12) is shown with its 95% confidence interval.
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(Table 1). In addition, earthworm activity, stimulated by the manure’s organic

matter, may have increased both macroporosity (not measured) and infiltration

in manure-treated plots, leading to the leaching of NO3-N from the corn’s root

zone through preferential flow paths (Amlinger et al. 2003; Richard 2005).

Infiltration did tend to increase with increasing manure rates in 2001 (data

to be reported later in a manuscript in preparation).

Slope Effects on Yield

As noted previously, soil slope increased nearly 5.5-fold from span 1 to span 6.

Therefore, silage yield was characterized as a function of slope for each

treatment without regard to the span on which the yield was measured.

Silage yield decreased as slope increased for each treatment each year.

These effects are illustrated in Figure 4 for the control and high manure treat-

ments in 2000. The compost treatments are not shown because the slopes of

their fitted relationships were similar to the control. Both relationships show

a highly significant decrease in yield as slopes increased from 0.8 to 4.4%.

These decreases are a consequence, in part, of past years’ irrigation-induced

erosion (Carter 1990). In this study, silage yield decreased with increasing

sediment losses in both 2000 and in 2001, with the decrease more pronounced

the second year (Lehrsch and Kincaid, unpublished). Losses of surface soil

likely removed nutrients, thus limiting yields.

Another cause, perhaps more likely, of yield decreases with increasing

slope may have been water stress. Irrigation-induced erosion, particularly

Figure 4. Slope effects on silage yield in 2000 from the 72 Mg manure ha21 rate and

control treatments.
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from the steeper portions of the study site, removed portions of the Portneuf’s

relatively thin Ap horizon and, with subsequent tillage, increased the pro-

portion of the Bk horizon in the corn’s root zone. Rasmussen and Cary

(1979) reported that when subsoil was mixed with topsoil, infiltration rates

were about 38% less into mixed soil than surface soil. Lower infiltration

rates lead to less recharge of the soil water reservoir, reduced water-use effi-

ciency, more frequent water stress, lower yields, and increased runoff

(Rasmussen and Cary 1979). Battiston, Miller, and Shelton (1987) attributed

decreases in maize grain yield from eroded sites to 1) nutrient deficiencies,

2) moisture stress, and 3) reduced plant populations and seedling vigor due

to poor seedbed conditions.

As slope increased, silage yield where 72 Mg manure ha21 were applied

decreased at a rate more than twice that where no manure was applied

(Figure 4). Nonetheless, the slopes of the two fitted relationships were not

different at the P ¼ 0.05 level, revealing that slope effects on yield were stat-

istically similar from treatment to treatment. Where no amendments were

applied, yield decreased on average nearly 1.9 Mg ha21 with every unit

increase in slope. Such findings highlight the requirement for controlling irri-

gation-induced erosion with polyacrylamide or other practices, particularly on

steeper slopes, to sustain silage yields in the future (Larney et al. 2000;

Lehrsch, Bjorneberg, and Sojka 2005). Producers must control or eliminate

erosion that may increase field slope (Carter 1990; Lehrsch, Bjorneberg,

and Sojka 2005). Management practices such as vegetated filter strips or

buried minidrains decrease slopes by increasing deposition to eliminate

convex slopes near field edges (Carter 1990). Findings illustrated in

Figure 4 do not suggest that manure should not be applied to sloping fields.

Indeed, data that account for slope effects shown in Figure 1 reveal that,

compared to controls, yield increased, at times slightly and at times signifi-

cantly, where moderate rates of both manure and compost were applied.

Data in Figure 2 show that manure applied at rates up to about 29 Mg ha21

increased yields more than controls. When producing corn silage, manure

applications are recommended to replace nutrients taken off in silage and to

improve soil structure (Rasmussen and Cary 1979; Tisdale and Nelson 1975).

CONCLUSIONS

In the first growing season after fall application of compost and manure, silage

yields were similar for both amendments at both rates. In the second growing

season, about 20 months after amendments were applied, compost at each rate

increased yield compared to controls. Also in the second year, yield was less

from the high manure rate than the medium. In 2001, yield increased initially,

then decreased with increasing manure rates. Nitrogen uptake, averaged

across years, was 230 kg ha21 from all amendment-treated plots, 15% more

than controls. Yield for each treatment decreased linearly as slope
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increased. Yield tended to decrease at a greater rate with slope where

excessive amounts of manure were applied, particularly in the first growing

season after manure application.

In conclusion, silage yield increased in the second growing season after

compost and manure were applied in the fall. Compost, applied at oven-dry

rates up to 47 Mg ha21, increased yields. Manure, on the other hand,

increased yields only where applied at oven-dry rates up to 29 Mg ha21.
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