Compost and Manure Effects on Sugarbeet Nitrogen Uptake, Nitrogen Recovery, and Nitrogen Use Efficiency

G. A. Lehrsch,* B. Brown, R. D. Lentz, J. L. Johnson-Maynard, and A. B. Leytem

ABSTRACT
To maximize recoverable sucrose from sugarbeet (Beta vulgaris L.), producers must effectively manage added N, be it from urea or organic sources such as manure or composted manure. Our study’s objective was to determine the effects of a one-time application of stockpiled and composted dairy cattle (Bos taurus) manure on sugarbeet N uptake, nitrogen recovery (NR) and nitrogen use efficiency (NUE). First-year Site A treatments included a control (no N), urea (202 kg N ha⁻¹), compost (218 and 435 kg estimated available N ha⁻¹), and manure (140 and 280 kg available N ha⁻¹). Site B treatments were a control, urea (82 kg N ha⁻¹), compost (81 and 183 kg available N ha⁻¹), and manure (173 and 340 kg available N ha⁻¹). Compost and manure were incorporated into two silt loams, a Greenleaf (fine-silty, mixed, superactive, mesic Xeric Calciaargid) near Parma, ID, in fall 2002 and 2003 and a Portneuf (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) near Kimberly, ID, in fall 2002 with sugarbeet planted the following spring. At each site, N uptake of sugarbeet tops, but not roots, was similar whether fertilized with urea or organic N, regardless of rate. Incorporating equal organic amendment rates to 0.05 rather than 0.10 m increased whole-plant N uptake 1.13-fold, to 163.3 kg N ha⁻¹. In general, NR varied among fertilizer sources such that urea > manure > compost. Where similar available N rates were supplied, NUE ranged from 44.1 to 83.5 kg sucrose kg⁻¹ available N, not differing among inorganic and organic N sources within site-years.

Effective season-long N management is essential to profitably produce sugarbeet (Campbell, 2002). Early in the growing season, mineral N must be present in the upper soil profile to be taken up by the still developing root system of the sugarbeet (Martin, 2001; Jaggard et al., 2009). As the growing season progresses, N uptake from the entire profile must be well synchronized with the mineralization of N from organic sources. With poor synchronization, N added as inorganic fertilizer or mineralized from organic fertilizers can be taken up too late in the season to positively impact yield or, as NO₃–N, can be leached below the fibrous root system of the sugarbeet (Allison et al., 1996). In semiarid regions, NO₃–N leaching is less of a concern under sprinkler irrigation where water is typically well managed (Carter, 1984) than under furrow irrigation where water cannot be as well managed (Lehrsch et al., 2014). With furrow irrigation, NO₃–N leached to greater depths early in the season is available there for late-season sugarbeet uptake (Winter, 1986), which reduces sucrose yield (Carter and Traveller, 1981). Nitrogen in dairy cattle manure or composted manure, with significant portions in less mobile organic forms, might minimize this NO₃–N accumulation in lower portions of the sugarbeet root zone.

Many crop producers are aware that applying compost or manure to their soils can (i) increase soil organic carbon (SOC) and improve soil physical properties (Haynes and Naidu, 1998; Loveland and Webb, 2003), and (ii) increase nutrient availability (Robbins et al., 1997; Eghball et al., 2004). Despite these benefits, sugarbeet producers hesitate to apply compost and manure to their fields because it is difficult to predict the amount and timing of the N mineralized from the amendments. Nitrogen availability from manure and composted manure must be estimable, ideally from research utilizing in situ measurements (Lentz et al., 2011), to ensure sugarbeet of the highest quality (James, 1971). Nitrogen is mineralized at different rates from compost and manure, being generally greater from manure than compost (Eghball, 2000; Diacono and Montemurro, 2010). Nitrogen mineralization rates can also vary spatially depending on organic N characteristics, particularly where organic N sources are applied at low rather than high rates because low rates provide less of a buffer where N availability may be marginal (Lentz and Lehrsch, 2012b).

Dairy manure is readily available in many areas of the Intermountain West, in both the United States and southern
Canada. In Idaho alone in 2014, the approximate 565,000
cattle raised produced more than 13.2 million Mg of manure
(Nennich et al., 2005; NASS, 2014). On some dairy farms,
producers compost manure (Richard, 2005), to reduce its mass,
volume, weed seed viability, and odor to ease handling, improve
storage and transport, and increase marketability (Draycott
and Christenson, 2003; Larney et al., 2006). Relative to raw
manure, on a per unit dry weight basis composted manure
generally contains (i) more stable C compounds, (ii) less
organic N, (iii) less NH₄–N, and, if little NO₃–N was lost
via runoff or leaching during composting (iv) more NO₃–N
(Eghball et al., 1997; Lehrsch and Kincaid, 2007). Without
careful handling and timely incorporation, however, much of
the NH₄–N in manure can be lost as NH₃ (Richard, 2005; Larney
et al., 2006).

Few have studied the effects of compost or manure on the N
uptake, recovery, and use efficiency of sugarbeet, though some
have studied other crops such as small grain. Nitrogen uptake by
barley (Hordeum vulgare L.) silage was similar between fresh
and composted beef cattle manure after nine annual
applications (Miller et al., 2009). Spring barley, including
both grain and straw, recovered about 15% of the labeled N
in manure and 40% of that in NH₄NO₃ in the first year after
a fall application (Jensen et al., 1999). As a 5-yr average, a
nutrient balance of 46 kg N (ha yr)⁻¹ (calculated as input less
offtake) was measured where sugarbeet was grown with half of its
N requirement supplied by manure and half by inorganic N
fertilizer (Vos and van der Putten, 2000). Sugarbeet tops
and roots recovered about 55% of labeled N in fall-applied
urea, while leaving 43% in 1.8-m-deep profiles of a silty clay
soil; organic N sources were not studied (Moraghan, 2004).
In southern Idaho, only two studies of irrigated sugarbeet
reported the recovery, uptake, or use efficiency of N. In those
studies, however, researchers applied only conventional
inorganic N fertilizer, either NH₄NO₃ (Carter, 1984), or
urea (Tarkalson et al., 2012). Hence, research is particularly
needed on N release from organic materials and, by extension,
N uptake by treated crops (Cabrera et al., 2005). Thus, this
field study’s objective was to determine the effects of a one-
time application of compost and manure on sugarbeet N
uptake, N recovery and N use efficiency from silt loam soils in
southwestern and south-central Idaho.

MATERIALS AND METHODS

Site A

Soils and Amendments. Site A was at the University of
Idaho Parma Research and Extension Center in Parma, ID.
The experiment was conducted from 2002 to 2004 on two
We studied one-time amendment applications rather than ones
repeated yearly because (i) one-time applications of relatively
high amendment rates would greatly impact a producer’s N
management and could potentially decrease both the yield and
quality of first-year sugarbeet (Lehrsch et al., 2015), (ii) one-time,
high-rate applications would reduce a farmer’s costs by potentially
eliminating application costs for at least one succeeding crop, and
(iii) we wished to study one-time, amendment application effects
on a succeeding, second-year crop of wheat (Triticum aestivum
L.) (findings to be presented in a later paper). A different field was
used the second year to avoid carry-over impacts from previous
applications of manure and compost. The soil at each field was
a Greenleaf silt loam (Soil Survey Staff, 2010) (Table 1). Initial
soil test N samples that were collected before any treatments
were applied revealed that there was less inorganic N (NO₃–N +
NH₄–N) but more organic C at Field D-2 than E-5 (Table 1).
Before the current study, no organic N sources had been applied to
either field for at least 10 yr.

Solid manure, including straw as bedding, from dairy cattle
was obtained from nearby sources each fall. The manure, never
handled as a slurry, had been scraped from open pens and
stockpiled through the summer in temporary, unconfined
piles. Composted dairy manure was obtained from a different
source, a south-central Idaho supplier who processed scraped,
solid manure from many sources via windrow composting with
mechanical turning. To determine the manure and compost
application rates each year, we assumed that the portion of
their total N contents that would be mineralized in the 12 mo
following application would be 200 g N (kg total N)⁻¹ from
compost and 400 g N (kg total N)⁻¹ from manure (Eghball
and Power, 1999; Richard, 2005). The resulting estimates of
first-year mineralized N were termed estimated available N.
Each fall, we collected samples of each amendment just before
application (described later). In fall 2002, dried samples of
each amendment were ground to pass a 1-mm screen and their
total C and N concentrations were determined by the dry
combustion (Tabatabai and Brenner, 1991) of an approximate
400-mg sample in a vario MAX carbon-nitrogen-sulfur (CNS)
analyzer (Elementar, Hanau, Germany). In fall 2003, the total
N in each amendment was determined via the micro-Kjeldahl
method with NH₄–N measured colorimetrically (Watson et
al., 2003). Due to a change in research personnel in fall 2003,
samples were discarded before total C had been measured.
Compost and manure properties are given in Table 2.

Experimental Design and Treatments. The experiment,
described in detail by Lehrsch et al. (2015), was designed as a
randomized complete block with eight treatments and four
replications (Table 3). First-year treatments consisted of a non-
N-fertilized control, conventional N fertilizer (urea) applied at
the University of Idaho recommended N rate of 202 kg N ha⁻¹

<table>
<thead>
<tr>
<th>Soil properties (0- to 0.3 m depth, or as noted)</th>
<th>Site A</th>
<th>Site B</th>
</tr>
</thead>
</table>

Table 1. Soil properties of the two Greenleaf silt loams at Site A and the Portneuf silt loam at Site B (after Lehrsch et al., 2015).
Table 2. Properties of the compost and manure applied to each site in fall of the year shown. Other than dry matter content, all measurements are on a dry-weight basis.

<table>
<thead>
<tr>
<th>Property</th>
<th>Compost</th>
<th>Manure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site A</td>
<td>Site B</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>2003</td>
</tr>
<tr>
<td>Total C, g kg⁻¹</td>
<td>282</td>
<td>163</td>
</tr>
<tr>
<td>Total N, g kg⁻¹</td>
<td>20.5</td>
<td>15.7</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>13.8</td>
<td>11.5</td>
</tr>
<tr>
<td>Dry matter content, kg ha⁻¹</td>
<td>0.65</td>
<td>0.65</td>
</tr>
</tbody>
</table>

† nd = not determined.

(Gallian et al., 1984), two rates of stockpiled, solid manure (21.9 and 43.8 Mg ha⁻¹, dry wt.) from dairy cattle, and two rates (53.1 and 106.1 Mg ha⁻¹, dry wt.) of composted dairy cattle manure (hereafter referred to simply as compost). The remaining two treatments were duplicates of the low rate of each amendment that were incorporated to 0.05 rather than 0.1 m (Table 3). The low and high rates of each amendment were chosen to apply estimated available N at rates equal to one and two times the recommended inorganic N rate of 202 kg N ha⁻¹, respectively. The recommended N rate was chosen based on a sugar beet root yield goal of 67.2 Mg ha⁻¹, after accounting for the 0.6-m-deep profile’s inorganic N that averaged 7.6 mg kg⁻¹ (Table 1) present in the fall of 2002. No additional N fertilizer was added to the manure- or compost-treated plots. Compost at the rates we studied, though needed for balance among our treatments, would not be economical because compost is (i) more expensive due to processing, (ii) less readily available, and (iii) higher in soluble salts. Our attempts to apply compost and manure at rates which, in the first year after application, provided (i) a similar, and (ii) twice the amount of available N as that supplied by the urea-fertilized treatment were not successful (Table 3), principally due to laboratory-to-laboratory discrepancies in manure analysis. In fall 2002, one of two subsamples of compost and of manure were analyzed by a local feed testing laboratory to obtain quick but preliminary estimates of their total N, which were, in turn, used with assumed mineralization rates to calculate the amendments’ bulk application rates (Table 3). We then applied the organic amendments at those rates in fall 2002. The second subsample of each was later analyzed using a CNS analyzer to measure its total N and C contents (Table 2). The CNS measurement of total N was used to calculate the estimated available N given in Table 3. The manure’s preliminary estimate differed, however, from its subsequent measurement resulting in the first-year estimated available N rates from the 2003 manure treatments being about 31% less than our two targeted rates. Consequently, in 2003 the three compost treatments at Site A supplied about 1.55-fold more estimated available N than their corresponding manure treatments, on average (Table 3). As planned, however, the 2003 compost treatments did supply available N at rates equal to and twice that of the urea-fertilized treatment, in general (Table 3).

Field Operations. On 1 Oct. 2002, residue from a previous wheat crop was incorporated with a disk, then rototilled. The organic amendments were applied by hand to the 6.7 by 15.2 m plots on 6 to 8 Nov. 2002. Once applied, the compost was incorporated within about 7 h and the manure within applied annually. Typical application rates are less for compost than manure not because of differences in available N but because compost is (i) more expensive due to processing, (ii) less readily available, and (iii) higher in soluble salts.

Table 3. Treatment descriptions and application rates of moisture-free bulk amendments and total N for sugarbeet grown in the year shown, along with an estimate of each treatment’s total N that became available via mineralization in the year ending at sugarbeet harvest (after Lehrysh et al., 2015).

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>Amendment</th>
<th>Bulk application rate‡</th>
<th>Depth of incorporation</th>
<th>Total N application rate</th>
<th>Estimated available N§</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2003</td>
<td>2004</td>
<td>m</td>
<td>kg N ha⁻¹</td>
</tr>
<tr>
<td>Site A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fert-A</td>
<td>Urea</td>
<td>0.44</td>
<td>0.44</td>
<td>0.05†</td>
<td>1089</td>
</tr>
<tr>
<td>Com1s-A</td>
<td>Compost</td>
<td>53.1</td>
<td>64.2</td>
<td>0.10</td>
<td>202</td>
</tr>
<tr>
<td>Com1-A</td>
<td>Compost</td>
<td>53.1</td>
<td>64.2</td>
<td>0.10</td>
<td>1089</td>
</tr>
<tr>
<td>Com2-A</td>
<td>Compost</td>
<td>106.1</td>
<td>128.4</td>
<td>0.10</td>
<td>2175</td>
</tr>
<tr>
<td>Man1s-A</td>
<td>Manure</td>
<td>21.9</td>
<td>22.8</td>
<td>0.05</td>
<td>350</td>
</tr>
<tr>
<td>Man1-A</td>
<td>Manure</td>
<td>21.9</td>
<td>22.8</td>
<td>0.10</td>
<td>350</td>
</tr>
<tr>
<td>Man2-A</td>
<td>Manure</td>
<td>43.8</td>
<td>45.6</td>
<td>0.10</td>
<td>701</td>
</tr>
<tr>
<td>Site B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl-B</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fert-B</td>
<td>Urea</td>
<td>0.18</td>
<td>0.07</td>
<td>0.10</td>
<td>82</td>
</tr>
<tr>
<td>Com1-B</td>
<td>Compost</td>
<td>28.4</td>
<td>40.3</td>
<td>0.10</td>
<td>403</td>
</tr>
<tr>
<td>Com2-B</td>
<td>Compost</td>
<td>64.3</td>
<td>913</td>
<td>0.10</td>
<td>913</td>
</tr>
<tr>
<td>Man1-B</td>
<td>Manure</td>
<td>23.3</td>
<td>433</td>
<td>0.10</td>
<td>433</td>
</tr>
<tr>
<td>Man2-B</td>
<td>Manure</td>
<td>45.7</td>
<td>850</td>
<td>0.10</td>
<td>850</td>
</tr>
</tbody>
</table>

† Ctrl, Fert, Com, Man = Control, Fertilizer (urea), Compost, or Manure, respectively; 1s, 1, 2 = Rate 1 shallowly incorporated to 0.05 m, Rate 1 incorporated to 0.10 m, or Rate 2 incorporated to 0.10 m, respectively; A = Site A or Site B, respectively.
‡ Organic amendments were applied in the fall preceding the year shown.
§ Calculated assuming a first-year mineralization of 200 g N (kg total N)⁻¹ from compost and 400 g N (kg total N)⁻¹ from manure (Eghball and Power, 1999; Richard, 2005).
† On 5 May 2003, 56 kg N ha⁻¹ was broadcast, then lightly incorporated, with 67 kg N ha⁻¹ subsequently sidedressed to the 0.05-m depth on 4 June, and the remaining 79 kg N ha⁻¹ sidedressed 13 d later. In spring 2004, 101 kg N ha⁻¹ was sidedressed to the 0.05-m depth on 14 May, with the remaining 101 kg N ha⁻¹ sidedressed on 2 June.
= none.
about 31 h using a rototiller. Thereafter, tool-bar mounted shovels were used to form beds every 0.56 m across the plots on 8 Nov. 2002. Based on soil tests from the previous fall, on 1 Apr. 2003 the entire field was uniformly top-dressed with P, K, and B (Lehrsch et al., 2015). The fertilizer was lightly incorporated as the furrows were reestablished with shovels on a tool-bar before planting. Three days later, bed tops were removed and sugarbeet was planted in a row centered atop each bed. The conventional N treatment was applied as a split application after stand establishment to enhance N use efficiency and N uptake (Carver and Traveller, 1981; Hergert, 2010). To the conventionally fertilized plots only, 56 kg N ha⁻¹ (as urea) was broadcast on 5 May 2003, followed by a sidedress application of 67 kg N ha⁻¹ (as urea) on 4 June and a second of 78 kg N ha⁻¹ (as urea) on 17 June. The site was furrow irrigated about 14 times each year with the crop managed using locally standard production practices (Panella et al., 2014). Just after being mechanically topped, the sugarbeet was harvested on 27 Oct. 2003. The trial was repeated on a different field (E-5) for the 2003/2004 season using, in general, the same or similar field operations performed at about the same times as for the earlier trial, with the following exceptions. Initial soil test N samples were collected on 24 November but had not yet been analyzed when the amendments had to be applied. Consequently, we estimated the inorganic N content of the second-year profile to be similar to that of the first-year and applied, then incorporated the organic N sources accordingly on 28 Nov. 2003, again within about 31 h of their application. In actuality, our estimate of residual inorganic N content was 60% too low (Table 1) and, in consequence, the inorganic N fertilizer applied in spring (that by design had to match the already applied organic sources) was greater than that recommended (Gallian et al., 1984). With no additional non-N fertilizer applied, sugarbeet was planted the following spring. Of the 202 kg N ha⁻¹ (as urea) applied in 2004 to the conventional (Fert-A) treatment, half was sidedressed on 14 May and half on 2 June. Rainfall and excessively wet soil delayed the fall 2004 sugarbeet harvest until 22 November.

Sample Collection and Analyses. Eight soil samples (0–0.3 and 0.3–0.6 m) were collected from the field on 16 Oct. 2002, then composited by depth to determine the baseline contents of inorganic N (NO₃⁻N + NH₄⁺-N), P, K, and selected micronutrients at the site. Three days before sugarbeet harvest, total biomass of tops (i.e., petioles and leaves) and roots were collected from 1.52 m of one row in each plot on 24 Oct. 2003. Each tissue sample was weighed fresh. Thereafter, about 1.8-kg subsamples of roots, having been shredded after weighing, and about 0.7-kg subsamples of tops were collected, weighed, dried at 60°C for approximately 3 or 4 d, then re-weighed to determine their dry matter content. Whole-plant biomass was calculated by summing the masses of the dry tops and dry roots. Each dry subsample was ground to pass a 1-mm screen and its N concentration determined via dry combustion as was that of the manure and compost in the fall of 2002. The N uptake by the tops, roots, and whole plants were determined by multiplying the dry mass of each component by its N content. All tissue samples subsequently collected in 2004 were analyzed as in 2003. Sugarbeet yield was reported earlier by Lehrsch et al. (2015).

The sugarbeet’s apparent nitrogen recovery (NR, as percent of total N applied) for each treatment except the control was calculated (Wen et al., 2003) as:

$$NR = \frac{N_{Uptake_{Trt}} - N_{Uptake_{Ctrl}}}{N_{Applied_{Avail,Trt}}} \times 100$$

[1]

where N_{Uptake_{Trt}} was the treatment’s whole-plant N uptake (kg N ha⁻¹), N_{Uptake_{Ctrl}} was the control’s whole-plant N uptake (kg N ha⁻¹), and N_{Applied_{Avail,Trt}} was the treatment’s total N applied (kg N ha⁻¹, Table 3). In addition, the sugarbeet’s agronomic N use efficiency (NUE, kg sucrose (kg available N)⁻¹) for each treatment except the control was calculated (Moll et al., 1982) as:

$$NUE = \frac{Sucrose \ Yields_{Trt}}{N_{Applied_{Avail,Trt}}}$$

[2]

where Sucrose Yields_{Trt} was the treatment’s sucrose yield (kg sucrose ha⁻¹, reported earlier by Lehrsch et al., 2015) and N_{Applied_{Avail,Trt}} was the treatment’s estimated available N applied (kg available N ha⁻¹). Each treatment’s estimated available N was the estimate of N mineralized in the first 12 mo after the amendment was applied (Table 3). The NUE values calculated using Eq. [2] were based on the available N supplied solely by the amendment, not the soil and amendment (Moll et al., 1982).

Site B

Soils and Amendments. Site B, in southern Idaho near the USDA-ARS Northwest Irrigation and Soils Research Laboratory, Kimberly, ID, was on a Portneuf silt loam (Table 1). The residual inorganic N in the soil, first measured the preceding fall, was decreased by a needed spring pre-irrigation and subsequent, untimely pre-plant rainfall. Thus, the Portneuf’s inorganic N measured in the control at sugarbeet planting has been given in Table 1. The Portneuf soil at Site B contained 1.67-fold more residual inorganic N than the two Greenleaf soils at Site A, on average. The field at Site B had received no organic N sources since 1994.

The experimental methods used at Site B have been described in detail by Lentz et al. (2011). In brief, the amendment rates studied at Site B were also established assuming that the N mineralized in the first year would be 200 g N (kg total N)⁻¹ from compost and 400 g N (kg total N)⁻¹ from manure. At Site B, we studied six of the eight treatments described for Site A (Table 3). The amendment properties are shown in Table 2 and application rates of the bulk amendments and estimated available N added are shown in Table 3. Samples of solid manure (never a slurry) and compost were collected, then weighed on 24 Oct. 2002, the day both were incorporated by disking. Subsamples of each were freeze-dried and subsequently analyzed to determine their total C and N contents (Nelson and Sommers, 1996) by combusting a 25-mg sample in a Thermo-Finnigan Flash EA1112 CNS analyzer (CE Elantech Inc., Lakewood, NJ).

Experimental Design and Treatments. The experiment at Site B was part of a larger study that examined organic amendment effects on both eroded and non-eroded portions of
Portneuf silt loam (Lentz et al., 2011). The current study presents findings that were not reported by Lentz et al. (2011) from six treatments applied only to non-eroded soil at Site B. Here, as at Site A, the design was a randomized complete block with four replications of six treatments: an unamended control (that received no N fertilizer), a fertilized treatment that received urea as the only nitrogen source, two manure treatments, and two compost treatments (Table 3). The compost treatments supplied the sugarbeet with estimated available N equal to about one times (1x) and two times (2x) the N supplied by the urea fertilizer. The Man1-B application rate of 23.3 Mg ha⁻¹ (Table 3) was chosen, in part, because it was common in the region. It was doubled to provide the Man2-B rate. The Man1-B and Man2-B rates were also chosen to supply, in general, the same total N, though inadvertently twice the available N, as did the Com1-B and Com2-B rates, respectively (Lentz et al., 2011). A sugarbeet root yield goal of 76 Mg ha⁻¹ (Table 3), after accounting for the inorganic N content in the 0.60-m profile.

Field Operations. The entire site was planted with Stephens winter wheat in mid-August 2002. Seven weeks later, without being harvested the wheat as a green manure was killed with herbicide, then incorporated by disking and roller harrowing. After solid manure was applied with a commercial spreader truck on 10 October, compost was applied using a calibrated rotary spreader mounted on a 9-Mg truck on 22 Oct. 2002. Both amendments were incorporated to a depth of 0.1 m by disking about 48 h later. On 29 Oct. 2002, urea was applied to the appropriate plots by hand, the entire field was sprayed with herbicide, then all materials were immediately incorporated with a roller-harrow. Thereafter, the field was tilled to form beds every 0.56 m across the 9-m wide by 21-m long plots in preparation for sugarbeet planting the following spring. After pre-irrigating in late April, sugarbeet was planted on 21 May 2003, then irrigated with sprinklers about 20 times throughout the season. Unlike Site A, the trial at Site B was not repeated for a second year.

Sample Collection and Analyses. Total biomass of sugarbeet tops and roots were measured from a 1.5-m-long portion of one row on 13 Oct. 2003, 1 d before harvest. Biomass samples at Site B were processed and analyzed, in general, as were biomass samples at Site A, but with the following exceptions. Subsamples of the biomass dried at 65°C were ground to pass an 865-µm screen and their total N concentrations determined as were those of the amendments at Site B. The apparent N recovery and agronomic N use efficiency of the sugarbeet at Site B were determined in the same manner as at Site A.

Statistical Analysis

We analyzed the data by site using a mixed-model ANOVA using the PROC Mixed procedure in SAS (SAS Institute Inc., 2009) with a significance probability (P) of 0.05, unless otherwise noted. The statistical model for Site A had treatment and year as fixed effects and block(year) as the random effect while that for Site B had treatment as fixed and block as random. When needed, ANOVA grouping options accounted for heterogeneous variances among treatments for each response variable. For all significant fixed effects, we separated least-squares means using the Tukey–Kramer multiple comparison test with letter groupings assigned using software written by Saxton (1998). In addition, we constructed single-degree-of-freedom contrasts to test for differences among groups of related treatments, averaged across years for Site A. A preliminary analysis examined each response variable’s error variance by treatment using the relationship between the variable’s treatment means and corresponding treatment standard deviations (Lehrsch and Sojka, 2011). We used a common log or, at times, square root transformation to stabilize the error variance of a variable, as needed. In those cases, means were back-transformed into original units for presentation.

RESULTS AND DISCUSSION

Site A

Treatments affected the biomass and N uptake of every plant component (tops, roots, and whole plants) while year influenced N uptake by roots and whole plants (Table 4). Treatment effects on root N uptake varied depending on year. Because of the structure that we planned in our treatments (Table 3), single degree-of-freedom contrasts, that is, class comparisons, most

<table>
<thead>
<tr>
<th>Table 4. Treatment, year, and contrast effects on sugarbeet response variables at Site A. Contrast effects are averaged across years and, where footnoted, across treatments.</th>
<th>ANOVA P > F</th>
<th>Biomass</th>
<th>N uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of variation</td>
<td>Tops</td>
<td>Roots</td>
<td>Whole plant</td>
</tr>
<tr>
<td>Treatment</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Year</td>
<td>0.34</td>
<td>0.24</td>
<td>0.35</td>
</tr>
<tr>
<td>Treatment × Year</td>
<td>0.82</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>Contrast†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shallow vs. Deep</td>
<td>0.28</td>
<td>0.63</td>
<td>0.52</td>
</tr>
<tr>
<td>Fert vs. Com1&2</td>
<td>0.84</td>
<td>0.92</td>
<td>0.97</td>
</tr>
<tr>
<td>Fert vs. Man1&2</td>
<td>0.10</td>
<td>0.37</td>
<td>0.20</td>
</tr>
<tr>
<td>Com_All vs. Man_All</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Com1_both vs. Com2-A</td>
<td>0.07</td>
<td>0.06</td>
<td>*</td>
</tr>
<tr>
<td>Man1_both vs. Man2-A</td>
<td>*</td>
<td>0.06</td>
<td>*</td>
</tr>
</tbody>
</table>

* Significant at P = 0.05.
** Significant at P = 0.01.
*** Significant at P = 0.001.
† Shallow = Com1-A + Man1s-A; Deep = Com1-A + Man1-A; Fert = Fert-A; Com1&2 = Com1-A + Com2-A; Man1&2 = Man1-A + Man2-A; Com_All = Com1s-A + Com2-A; Man_All = Man1s-A + Man1-A + Man2-A; Com1_both = Com1s-A + Com1-A; Com2_both = Com2-A + Com1-A; Man1_both = Man1s-A + Man1-A.
might speculate that volatilization of ammonia from manure
fer between incorporation depths for either amendment. One
applied (Table 5). This finding suggests that N loss as ammonia
nent, by either amendment where low (i.e., similar) rates were
0.10 m, had no effect on N uptake, regardless of plant compo-
0.10 m may have spurred early-season sugarbeet growth and
lar rate of amendment was incorporated to 0.05 rather than
and likely greater water retention (not measured) where a simi-
35% of the plant’s roots are in the profile’s uppermost 0.3 m
mineralized through the season (Lentz et al., 2011). Indeed,
to acquire inorganic N, both subsurface residual and that
and thereby (ii) to more quickly establish a deep root system
incoming radiation (Blumenthal, 2001; Jaggard et al., 2009),
to develop full
micronutrients, and recently mineralized N (i) to develop full
take up the amendments’ supplied inorganic N, and P, K, and
micronutrients, and recently mineralized N (i) to develop full
contrast‡ showed that incorporating organics to a shal-
and thereby (ii) to more quickly establish a deep root system
take up the amendments’ supplied inorganic N, and P, K, and
micronutrients, and recently mineralized N (i) to develop full

Treatment Effects

Depth of Incorporation. Incorporation depth, 0.05 vs.
0.10 m, had no effect on N uptake, regardless of plant compo-
ent, by either amendment where low (i.e., similar) rates were
applied (Table 5). This finding suggests that N loss as ammonia
via volatilization after incorporation, if it occurred, did not dif-
fer between incorporation depths for either amendment. One
might speculate that volatilization of ammonia from manure
might be greater with shallow rather than deep incorporation
but we found no evidence to support such a view (Table 5).
Thus, the shallow and deep treatments of the low rate of each
amendment were often considered together as a class. When
averaged across amendments and years, however, the shallow
vs. deep contrast showed that incorporating organics to a shal-
lower rather than deeper depth increased N uptake by whole
plants (Table 5). While sugarbeet can root to depths of nearly
2 m in moist soil profiles without root-restrictive layers, about
35% of the plant’s roots are in the profile’s uppermost 0.3 m
(Blumenthal, 2001; Yonts and Palm, 2001). Lower bulk density
and likely greater water retention (not measured) where a simi-
lar rate of amendment was incorporated to 0.05 rather than
0.10 m may have spurred early-season sugarbeet growth and
development. Faster growth with shallow incorporation would
have enabled the young sugarbeet with small root systems to
up take the amendments’ supplied inorganic N, and P, K, and
micronutrients, and recently mineralized N (i) to develop full
Canopies relatively early in the growing season to intercept
incoming radiation (Blumenthal, 2001; Jaggard et al., 2009),
and thereby (ii) to more quickly establish a deep root system
to acquire inorganic N, both subsurface residual and that
mineralized through the season (Lentz et al., 2011). Indeed,
as Brown et al. (2006) reported, in the one instance when
in-season uptake differed with incorporation depth, early-
season N uptake was greater with shallow rather than deep

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Biomass</th>
<th>N uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tops</td>
<td>Roots</td>
</tr>
<tr>
<td></td>
<td>Mg ha⁻¹</td>
<td>kg N ha⁻¹</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>2.43 c†</td>
<td>11.7 c</td>
</tr>
<tr>
<td>Fert-A</td>
<td>3.73 ab</td>
<td>16.8 ab</td>
</tr>
<tr>
<td>Com1s-A</td>
<td>3.70 ab</td>
<td>17.2 ab</td>
</tr>
<tr>
<td>Com1-A</td>
<td>3.33 abc</td>
<td>15.5 ab</td>
</tr>
<tr>
<td>Com2-A</td>
<td>4.02 a</td>
<td>18.3 a</td>
</tr>
<tr>
<td>Man1s-A</td>
<td>3.10 abc</td>
<td>14.2 bc</td>
</tr>
<tr>
<td>Man1-A</td>
<td>2.89 bc</td>
<td>15.2 abc</td>
</tr>
<tr>
<td>Man2-A</td>
<td>3.69 ab</td>
<td>16.7 ab</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>3.58</td>
<td>15.0</td>
</tr>
<tr>
<td>2004</td>
<td>3.14</td>
<td>16.4</td>
</tr>
<tr>
<td>Contrast‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shallow vs. Deep</td>
<td>3.40</td>
<td>15.7</td>
</tr>
<tr>
<td>Deep vs. Fert</td>
<td>3.11</td>
<td>15.4</td>
</tr>
<tr>
<td>Com1 &2</td>
<td>3.67</td>
<td>16.9</td>
</tr>
<tr>
<td>Fert vs. Man1 &2</td>
<td>3.73</td>
<td>16.8</td>
</tr>
<tr>
<td>Man1 &2</td>
<td>3.29</td>
<td>16.0</td>
</tr>
<tr>
<td>Com_All vs. Man_All</td>
<td>3.68 b</td>
<td>17.0 a</td>
</tr>
<tr>
<td>Com1 both vs. Man1</td>
<td>3.32 b</td>
<td>15.4 b</td>
</tr>
<tr>
<td>Com2 vs. Man2</td>
<td>3.51</td>
<td>16.4</td>
</tr>
<tr>
<td>Man1 both vs. Man2-A</td>
<td>2.99 b</td>
<td>14.7</td>
</tr>
<tr>
<td>Man2-A</td>
<td>3.69 a</td>
<td>16.7</td>
</tr>
</tbody>
</table>

† For a given response variable, treatment, year, or contrast means followed by a common letter were not significantly different at P = 0.05. No letters are shown if (i) the effect was not significant in the ANOVA; or (ii) an interaction was significant.
‡ Shallow = Com1s-A + Man1s-A; Deep = Com1-A + Man1-A; Fert = Fert-A; Com1 & 2 = Com1-A + Com2-A; Man1 & 2 = Man1-A + Man2-A; Com_All = Com1s-A + Com1-A + Com2-A; Man_ALL = Man1s-A + Man1-A + Man2-A; Com1_both = Com1s-A + Com1-A; Man1_both = Man1s-A + Man1-A.
§ For a given response variable, treatment, year, or contrast means followed by a common letter were not significantly different at P = 0.05. No letters are shown if (i) the effect was not significant in the ANOVA; or (ii) an interaction was significant.

Table 5. Treatment, year, and contrast effects on sugarbeet response variables at Site A. Yearly means are averaged across treatments while both treatment and contrast means are averaged across years.
Differences between Organic Amendments and the Control or Fertilizer. Sugar beet biomass and N uptake were often greater for the fertilizer treatments, whether organic or inorganic, or shallowly or deeply incorporated, than the control, Ctrl-A (Table 5). The Com2-A treatment, which provided the most available N in 2003 and equal to the most in 2004 (Table 3), produced the greatest mean biomass and N uptake of all treatments, though often statistically similar to other treatments (Table 5). The Com2-A treatment, though having no effect on sucrose content, did impair sugar beet quality by increasing the conductivity and nitrate of the brei (finely ground root tissue from the shredding of washed and crowned roots; Campbell, 2002), relative to the urea-fertilized treatment (Lehrsch et al., 2015). Brei nitrate for the Com2-A treatment was 2.2-fold greater (significant at \(P < 0.05 \)) than that for Fert-A (Lehrsch et al., 2015). This more-than-double brei nitrate is logical since approximately twice as much available N was provided by the Com2-A than Fert-A treatment (Table 3). Brei nitrates increase as in-season soil NO\(_3^–\)-N concentrations increase (Winter, 1986). Whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A). This finding of greater whole-plant N uptake was greater where fertilized with urea (Fert-A) than with the deeper-incorporated low rate of either amendment (Com1-A or Man1-A).
apparent why subsoiling did not benefit the root N uptake of the Man1s-A treatment to the same degree as that of Com1s-A (Fig. 1). These differing responses between shallowly incorporated compost and manure (i) reveal why incorporation depth effects on N uptake averaged across amendment treatments differed among plant components (Table 4), and (ii) suggest that factors other than incorporation depth affect the N uptake, by roots at least, of each amendment. The numerous differences in root N uptake among treatments in 2003 relative to 2004 (Fig. 1) is because variability among replications within treatments was much less in 2003 than 2004 (Fig. 1). In 2003 where rooting depth was limited by compaction, sugarbeet roots in each plot likely fully explored the available root zone, efficiently scavenging the inorganic N present (Tarkalson et al., 2012). In 2004, in contrast, where rooting was unrestricted after subsoiling, normally expected plot-to-plot variability in root system development and rooting depth (not measured) likely occurred, thereby increasing variability in N uptake among treatment replicates (Fig. 1). Alternatively, soil N may have varied less in Field D-2 in 2003 than in Field E-5 in 2004, despite the fields having similar cropping and tillage histories.

Nitrogen Recovery and Use Efficiency

Sugarbeet nitrogen recovery (NR) in the first year differed among treatments ($P < 0.001$) and between years ($P = 0.021$) with no significant interaction present ($P = 0.09$). The Fert-A treatment recovered 41% of its total applied N, much more than any of the organic treatments (Table 6), likely because it supplied inorganic N that required no microbially mediated mineralization before uptake. In comparison, sugarbeet recovered an average of only 5.4% of the total N in compost and 8.2% of the total N in manure (Table 6), because much of the total N those sources provided remained in the organic form, not yet mineralized. The current study’s first-year recoveries of N from both fall-applied inorganic and organic sources (Table 6) compare favorably with the 40% recovery from NH$_4$NO$_3$ and 15% recovery from manure by spring barley reported by Jensen et al. (1999). Moreover, the N recoveries shown in Table 6 generally lie within the ranges for manure, compost, and inorganic N fertilizers reported by Miller et al. (2009). Recovery of total N was 7.5% in 2003 but 1.73-fold greater, 13.0%, in 2004, when averaged across treatments (data not shown in tabular form). Regardless of the amendment applied, recovery was less in 2003 than 2004 because, among other factors, sugarbeet rooting in 2003 was restricted by compaction (Lehrsch et al., 2015). The 1.73-fold greater recovery in 2004 than 2003 suggests that, of the added organic N that was mineralized then nitrified, a substantial portion as NO$_3$–N may have been leached below 0.24 m, the depth of the compacted zone in Field D-2 in 2003. We speculate that some of that leached N was recovered by sugarbeet roots growing below 0.24 m in the subsoiled Field E-5 in 2004.

The agronomic nitrogen use efficiencies (NUEs) for sugarbeet each year are shown in Fig. 2. As expected (Carter, 1984; Raun and Johnson, 1999), the NUE each year decreased with increasing applications of available N, regardless of the amendment used (Fig. 2A and 2B). In 2003, 36% less available N was applied by the manure than compost treatments that year (Table 3) and, as

![Fig. 1. Sugarbeet root N uptake by treatment each year at Site A. Within a year, means ($n = 4$, shown with 95% confidence limits) with a common letter were not significantly different at $P = 0.05$. Root N uptake differed between years only for the Com1s-A treatment.](image-url)
a consequence, the NUE was greater for Man1-A than Com1-A and for Man2-A than Com2-A (Fig. 2A). Also in 2003, every treatment except Com2-A exhibited an NUE similar to that of Fert-A (Fig. 2A). In 2004, sugarbeet in the Com2-A and Man2-A treatments used N less efficiently than the sugarbeet in any other treatment (Fig. 2B) because sugarbeet in those two treatments were supplied with 403 kg available N ha\(^{-1}\), nearly twice the 202 kg available N ha\(^{-1}\) supplied by the others, save the control (Table 3). The NUEs were similar among the Fert-A, Com1s-A, Com1-A, Man1s-A, and Man1-A treatments in 2003 (Fig. 2A) and in 2004 (Fig. 2B). This finding reveals that N mineralized from organic sources in the first year was used as efficiently as N from an inorganic source, as long as all sources provided approximately similar amounts of available N (Table 3).

The NUE values reported here are similar to those measured by Tarkalson et al. (2012) for conventionally fertilized sugarbeet in south-central Idaho, also grown in a silt loam.

Site B

Sugarbeet biomass and N uptake at Site B (Table 7) were less affected by amendment treatments than at Site A (Table 4). The few responses at Site B may have been due to sufficient available soil N already present at study initiation. When the studies were begun, there was 1.67-fold more residual inorganic N in the soil profile at Site B than at A, on average (Table 1), thereby making the sugarbeet less dependent on and less responsive to added N, whatever its source, at Site B than at A. The sugarbeet root yield in the non-N-fertilized control was 56.3 Mg ha\(^{-1}\) at Site B, nearly 2 Mg ha\(^{-1}\) greater than the 2-yr average at Site A (Lehrs et al., 2015). Moreover, plants may have responded less to applied N where daylengths were shorter, as at Site B, than longer, as at Site A (A. Moore, personal communication, 2014). The N uptake was similar for tops, though not roots, and for whole plants whether fertilized with conventional inorganic N or with compost or manure, regardless of the rate applied (Table 8).

Contrasts revealed, however, some differences between classes in sugarbeet biomass and N uptake (Table 8). Top and whole-plant biomass were less when fertilized with the compost of the Com1-B and Com2-B treatments (as a class) than with the urea of the Fert-B treatment. These differences, and more, carried on to the N uptake findings (Table 8). Relative to urea fertilization, beet N uptake where fertilized with the two compost treatments as a class (i.e., Com1&2) was significantly less and with the two manure treatments as a class

Table 7. Treatment and contrast effects on response variables for sugarbeet at Site B.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Biomass</th>
<th>N uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tops</td>
<td>Roots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.10</td>
<td>0.35</td>
</tr>
<tr>
<td>ANOVA P > F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fert vs. Com1&2</td>
<td>**</td>
<td>0.14</td>
</tr>
<tr>
<td>Fert vs. Man1&2</td>
<td>0.24</td>
<td>0.93</td>
</tr>
<tr>
<td>Com1&2 vs. Man1&2</td>
<td>0.14</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

* Significant at P = 0.05.
** Significant at P = 0.01.
*** Significant at P = 0.001.
† Fert = Fert-B; Com1&2 = Com1-B + Com2-B; Man1&2 = Man1-B + Man2-B.
In the 2003 growing season. Because compost is composed of relatively stable, recalcitrant carbonaceous compounds (Larney et al., 2006), its influence on microbial growth was limited (Lentz et al., 2011). This N immobilization likely decreased sugarbeet inorganic N (Table 3) and are thought to release greater amounts of N (Table 3) and are thought to release greater amounts of available N in late summer, decreasing crop quality (Carter and Traveller, 1981; Blumenthal, 2001; Moore et al., 2009). Nitrogen immobilization in the organically amended treatments was likely responsible (Wen et al., 2003). Studying the same soil, Lentz et al. (2011) found that more early-summer N immobilization occurred, even to depths of 0.6 m, in compost- and manure-treated plots relative to urea-fertilized ones. This N immobilization likely decreased sugarbeet inorganic N uptake from the plots treated with compost and, somewhat less so, with manure, relative to urea (Table 8). Moreover, this N that initially had been immobilized was apparently not available for late-season uptake since sugarbeet crop quality did not decrease at Site B (Lehrsch et al., 2015). Though less noticeable, N immobilization may also have occurred at Site A where manure was applied. In 2003 at Site A, root N uptake was less where manured than urea-fertilized, in general (Fig. 1). Recall, however, that in general those manure treatments in 2003 provided less available N to the growing sugarbeet than from the compost treatment (Table 3).

In general, less N was taken up by sugarbeet tops, roots, and whole plants from the compost class than from the manure class or the Fert-B treatment (Table 8). Data for the classes have been pooled across rates since rates within amendments were similar (Table 8). The least uptake from the compost class was due to two related factors. First, the compost class supplied only about half the available N, on average, than did the manure class (Table 3). Second, where compost was applied there was likely less inorganic N available for uptake early in the 2003 growing season. Because compost is composed of relatively stable, recalcitrant carbonaceous compounds (Larney et al., 2006), its influence on microbial growth was limited (Lentz et al., 2011). On the other hand, where manure with more easily metabolized C was added, microbial populations probably increased then decreased rapidly, releasing in total much more organic N than where compost was added (Lentz et al., 2011). The N added by the Fert-B treatment was immediately available, requiring no microbial transformation of organic N to inorganic N. All sugarbeet biomass and N uptake measures responded similarly whether fertilized with urea (Fert-B) or manure (Man1-B and Man2-B as a class). The greater whole-plant biomass and root N uptake from the manure class than the compost class was a likely consequence of twice the available N being supplied by the manure than compost (Table 3) and both increased and sustained mineralization of the labile organic nitrogenous compounds prevalent in manure but not compost (Monaco et al., 2010; Lentz et al., 2011).

In general, the NR by sugarbeet at Site B resembled that at Site A (Table 6) and thus has not been shown. At Site B, the NR tended to be greatest for the Fert-B treatment, intermediate for the manure treatments, and least for the compost treatments. These trends in NR were also reported by Lentz et al. (2011), though as averages for data collected on both eroded and non-eroded soil.

The pattern of the sugarbeet NUEs at Site B (Table 9) was similar to that at Site A (Fig. 2) except that the NUEs at Site B decreased among the Fert-B and manure treatments such that Fert-B > Man1-B > Man2-B. Also similar between sites were the patterns between the fertilizer and compost treatments. The NUEs were similar between the fertilized and compost low-rate treatments, both of which were greater than the NUE of the compost high-rate treatment (Table 9 and Fig. 2). These patterns again reflect the similar available N provided by the fertilizer and low-rate compost and the greater available N provided by the high-rate compost (Table 3). The NUE values shown in Table 9 mostly fall within the NUE range [32–107 kg sucrose (kg N supply)−1] reported by Tarkalson et al. (2012) who studied the same Portneuf silt loam. The contrasts in Table 9 reveal that sugarbeet from the Fert-B

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Treatment</th>
<th>Biomass</th>
<th>N uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tops</td>
<td>Roots</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg ha⁻¹</td>
<td>kg N ha⁻¹</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl-B</td>
<td>3.41</td>
<td>13.10</td>
<td>16.51</td>
</tr>
<tr>
<td>Fert-B</td>
<td>5.49</td>
<td>14.51</td>
<td>20.00</td>
</tr>
<tr>
<td>Com1-B</td>
<td>3.97</td>
<td>12.97</td>
<td>16.95</td>
</tr>
<tr>
<td>Com2-B</td>
<td>3.94</td>
<td>13.04</td>
<td>16.97</td>
</tr>
<tr>
<td>Man1-B</td>
<td>4.70</td>
<td>14.27</td>
<td>18.97</td>
</tr>
<tr>
<td>Man2-B</td>
<td>4.78</td>
<td>14.92</td>
<td>19.70</td>
</tr>
<tr>
<td>Contrast†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fert vs. Com1&2</td>
<td>5.49 a</td>
<td>14.51</td>
<td>20.00 a</td>
</tr>
<tr>
<td>Fert vs. Man1&2</td>
<td>4.74 b</td>
<td>14.60</td>
<td>19.34 b</td>
</tr>
<tr>
<td>Com1&2 vs. Com2&2</td>
<td>3.95 b</td>
<td>13.00</td>
<td>16.96 b</td>
</tr>
<tr>
<td>Man1&2 vs. Man2&2</td>
<td>4.74 b</td>
<td>14.60</td>
<td>19.34 a</td>
</tr>
</tbody>
</table>

† For a given response variable, treatment or contrast means followed by a common letter were not significantly different at P = 0.05. No letters are shown if (i) the effect was not significant in the ANOVA, or (ii) an interaction was significant.

‡ Fert = Fert-B; Com1&2 = Com1-B + Com2-B; Man1&2 = Man1-B + Man2-B.
treatment used applied N more efficiently to produce sucrose than the sugarbeet fertilized with either compost or manure. Furthermore, sugarbeet produced sucrose nearly twice as efficiently by utilizing N from compost rather than manure (Table 9), in part because only half as much available N was supplied by compost than manure, on average (Table 3).

CONCLUSIONS

1. The N uptake of sugarbeet tops at each site, but not roots, and by whole plants at Site B was similar whether fertilized with urea or an organic N source, regardless of rate. For whole plants at Site A, however, N uptake was similar between urea and only the high rate of each amendment, in general.

2. When averaged across amendment rates, N uptake of tops, roots, and whole plants was similar (i) between urea and manure for all site-years, and (ii) between urea and compost for two of three site-years, when the organic amendments were incorporated to a depth of 0.10 m. Thus, the N needs of sugarbeet can be met by the mineralization of organic N from fall-applied manure or compost, in general.

3. Incorporating organic amendments at equal rates to a depth of 0.05 rather than 0.10 m increased whole-plant N uptake.

4. Sugarbeet N uptake increased by 1.29-fold or more, on average at Site A, when the application rate (dry-weight basis) of compost increased from 53.1 to 106.1 Mg ha⁻¹ in 2003 and from 64.2 to 128.4 Mg ha⁻¹ in 2004. Similarly, sugarbeet N uptake increased by 1.35-fold or more when the manure rate increased from 21.9 to 43.8 Mg ha⁻¹ in 2003 and from 22.8 to 45.6 Mg ha⁻¹ in 2004.

5. Nitrogen recovery from each fertilizer source generally decreased in the order urea > compost > manure > sugarbeet. Sugarbeet recovered 41.0% of the total N in urea, 8.2% of the total N in manure, and 5.4% of the total N in compost each year, on average, from two fields at Site A. First-year recovery from organic sources was low because much of their total N remained predominantly in organic rather than inorganic forms.

6. Nitrogen use efficiency did not differ among inorganic and organic N sources for each site-year, when similar rates of available N were supplied. The NUE decreased with increasing application rates, regardless of the organic N source.

7. Producers can grow sugarbeet using organic amendments, particularly manure, in lieu of conventional inorganic fertilizer, when applied at equivalent available N rates. Both N use efficiency and N uptake will be similar to that where inorganic N would have been applied.

ACKNOWLEDGMENTS

We thank Drs. Don Horneck, Amber Moore, W. Bart Stevens, and several anonymous reviewers for their helpful comments on an initial draft of the paper. We also thank Dr. Bruce Mackey, Albany, CA, for assisting with our statistical analyses. In addition, we acknowledge the technical assistance, in both field and laboratory, of Lindsey Balis-Cypriano, Percy Booth, Jim Foerster, Lerry Freeborn, Roger Gibson, Paula Jolley, Myles Miller, Philip O’Connor, and John Rawluk.

REFERENCES

Campbell, L.G. 2002. Sugar beet quality improvement. J. Crop Prod. 5:395–413. doi:10.1300/J144v05n01_16

