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Abstract: The area irrigated by furrow irrigation in the United States has been steadily decreasing but still represents about 20% of the total
irrigated area in the United States. Furrow irrigation sediment loss is a major water quality issue, and a method for estimating sediment loss
is needed to quantify the environmental effects and estimate effectiveness and economic value of conservation practices. Artificial neural
network (NN) modeling was applied to furrow irrigation to predict sediment loss as a function of hydraulic and soil conditions. A data set
consisting of 1,926 furrow evaluations, spanning three continents and a wide range of hydraulic and soil conditions, was used to train and test
a multilayer perceptron feed forward NN model. The final NN model consisted of 16 inputs, 19 hidden nodes in a single hidden layer, and
1 output node. Model efficiency (ME) of the NN model was ME ¼ 0.66 for the training data set and ME ¼ 0.80 for the test data set. The
prediction performance for the complete data set of 1,926 furrow evaluations was ME ¼ 0.70 with an absolute sediment loss prediction error
of less than �5, �10, �20, and �30 kg per furrow for 35, 53, 72, and 85% of the data set values, respectively. The NN model is applicable
to predicting sediment loss rates between 1 and 300 kg per furrow for furrow lengths between 30 and 400 m, slopes between 0.1 and 4%, flow
rates between 5 and 75 Lmin−1, and silt or sand particle–sized fractions between 0.1 and 0.75. DOI: 10.1061/(ASCE)IR.1943-4774
.0000932. © 2015 American Society of Civil Engineers.

Introduction

The area irrigated by furrow irrigation in the United States has been
steadily decreasing but still represents about 20% of the total irri-
gated area or 4,400,000 ha (USDA NASS 2009). In furrow irriga-
tion, water is introduced into small, equally spaced, human-made
channels at the upslope end of a field and allowed to flow down-
slope and infiltrate, storing water in the root zone for crop growth.
Water flow rate must be sufficient to ensure water advances to the
end of the field in a reasonable amount of time to allow sufficient
time for water to infiltrate along the full length of the field. Water in
excess of infiltration flows off the field and often enters nearby
water bodies. As water flows in furrows it detaches soil particles
which are transported downslope. Furrow flow rate decreases

downslope due to infiltration such that suspended soil particles
can no longer be transported and are deposited in the furrow. Water
leaving the field carries sediment along with absorbed chemicals
which degrades the quality of receiving water bodies. Soil loss from
furrow irrigation often exceeds 2–11 Mgha−1 (Koluvec et al. 1993)
and rates of up to 100 Mgha−1 have been measured in experimen-
tal studies (Berg and Carter 1980; Evans et al. 1995; Trout 1996;
Fernández-Gómez et al. 2004). Crop yield reductions up to 25%
have been documented at furrow inflow ends of fields due to soil
loss from 80 years of furrow irrigation erosion (Berg and Carter
1980; Carter et al. 1985; Carter 1993). Furrow irrigation sediment
loss is a major water quality issue, and a method for estimating
sediment loss is needed to quantify the environmental effects
and estimate effectiveness and economic value of conservation
practices.

Acquiring field data for developing process-based furrow ero-
sion models is challenging (Mateos and Giráldez 2005). Physical
models used to predict furrow erosion are based on predominantly
empirical equations used to model rainfall-induced rill erosion
(Bjorneberg et al. 2000). The conditions used during experimental
development of governing equations limit use of the equations to
field conditions similar to experimental conditions. The physical
conditions used to define the functional relationships of rill erosion
under rainfall runoff differ from furrow irrigation in several aspects
(Bjorneberg et al. 2000). For example, water initially flows on dry
soil during furrow irrigation, but rainfall wets the soil before water
begins to flow in rills. Instantaneous wetting of soil aggregates
replaces air absorbed on internal soil particle surfaces which can
actually break apart soil aggregates (Carter 1990), increasing soil
erodibility. This is a possible reason why furrow erosion often
occurs with less than critical hydraulic shear (Kemper et al. 1985).
Relatively clean water is introduced into furrows while sediment-
laden water enters rills under rainfall erosion. Furrow flow rate
decreases with distance, which is not typically the case for rainfall
runoff. Flow in furrows usually lasts 12–24 h, considerably longer
than a rainfall-runoff event. Initially, sediment detachment during
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furrow irrigation may be similar to rill erosion, but after several
hours head cuts and side cuts become important mechanisms for
sediment detachment (Bjorneberg et al. 2000) which are not con-
sidered in rainfall-induced rill erosion.

Trout and Neibling (1993) provided a review of erosion and
sedimentation processes in furrow irrigation along with field study
results. They found that the processes of detachment, transport, and
deposition occurring in furrow irrigation are not adequately quan-
tified by rill erosion equations based on hydraulic shear. Nearing
et al. (1991) investigated particle detachment in rills at low slopes
(0–2%) and shear stresses (0.5–2 Pa) and found that detachment
rate was not a function of shear stress nor was it related to the
existence of a critical shear. They found that the logarithm of de-
tachment rate was well correlated with flow depth, slope, and soil
aggregate size (R2 ¼ 0.94). While rill erosion–based equations do
not adequately predict erosion for furrow irrigation, they do provide
insight into the factors and important relationships (Fernández-
Gómez et al. 2004). Trout and Neibling (1993) concluded that
while process-based models are important for understanding fur-
row erosion processes, current models can predict furrow sediment
loss no better than empirical models relating sediment loss to
measurable hydraulic parameters such as slope, flow rate, and soil
characteristics such as texture. Bjorneberg et al. (1999) evaluated
furrow irrigation erosion predicted by the water erosion prediction
project (WEPP) model (Nearing et al. 1989), a process-based
model, and concluded that the steady-state WEPP was not appli-
cable to furrow erosion based on field evaluations for a single soil.
Baseline erodibility and critical shear values developed under
rainfall-runoff conditions were higher than calibrated values for
furrow irrigation. Sediment deposition based on transport capacity
also did not match measured deposition in furrows. Bjorneberg et al.
(2010) reviewed the current status of furrow sediment loss predic-
tion and concluded that an empirical model may be as good as or
better than a process-based model where the parameters cannot be
quantified for field conditions.

Development of empirical models for predicting furrow irriga-
tion sediment loss has been a subject of research for over half a
century. Koluvek et al. (1993) noted that the first published equa-
tion for predicting furrow erosion was based on research in Utah
which directly related erosion to exponential functions of furrow
flow rate and slope with exponents greater than 1 (Israelson et al.
1946). Regression models have been developed to predict sediment
loss with limited success (Fornstrom and Borrelli 1985; O’Donkor
1978). More recently, an empirical surface irrigation soil loss
(SISL) model was developed by the Idaho Natural Resources Con-
servation Service (NRCS) in 1991 to estimate annual soil loss from
furrow irrigated fields to assess benefits of conservation practices,
such as converting from furrow to sprinkler irrigation (Bjorneberg
et al. 2007). A base soil loss value is multiplied by several factors to
account for variations in soil erodibility, previous crop, conserva-
tion practices, and irrigation management. SISL was based on over
200 field-years of data from southern Idaho. An evaluation of the
SISL model with measured furrow irrigation erosion from two
studies in Idaho and one in Washington showed that the model pre-
dicted the relative effects of conservation tillage practices of straw
mulching and surge irrigation reasonably well; however, the abso-
lute differences between measured and predicted soil loss were
sometimes large. Number of irrigations per season is embedded in
the base soil loss so SISL cannot be applied when irrigation appli-
cation frequency varies significantly from typical southern Idaho
conditions. Bjorneberg et al. (2007) also noted that the baseline
soil loss was less than field measured soil loss on occasions, indi-
cating that a different method is needed for calculating baseline
soil loss.

Artificial neural network (NN) models represent a collection
of relatively new modeling approaches that are rapidly finding
uses in branches of engineering and science. Initially developed
as a means of duplicating the functioning of a biological neuron,
NN modeling techniques suitable for predicting physical proc-
esses have been developed over the past 50 years. A common
basic NN architecture is the multilayer perceptron feed-forward
NN which consists of multiple layers of simple computing nodes
(neurons) that operate as nonlinear summing devices which are
interconnected between layers by weighted links (wij, Fig. 1),
where numerical computation proceeds left to right without feed-
back to a previous layer. Input values Xi (furrow irrigation field
variables, Fig. 1) and interconnection weights are used to calcu-
late Zj for each hidden layer neuron. Output from the neuron is
calculated from the transfer (activation) function F using Zj
(Fig. 1), which becomes the input vector to the output layer
where the output from the neural network is calculated in the
same manner as for the hidden layer. The functionality of a
neuron is to sum the product of the weights and input vectors
plus a bias weight (wbj, Fig. 1) and process the sum through
a nonlinear transfer (activation) function. Each weight is
determined when measured data are presented to the network
during a training process. Successful training of a NN results
in a numerical model that can perform tasks such as predicting
an outcome value, classifying an object, approximating a func-
tion, or recognizing a pattern. Artificial neural networks can an-
alyze multisource data sets and are considered to be universal
classifiers or approximators (Haykin 2009).

Artificial neural networks are appropriate where the phys-
ical processes are complex, unknown, or difficult to represent
mathematically. These three conditions apply in the case of furrow
irrigation sediment loss. Artificial neural networks are data-driven
models requiring a representative data set for training. Thus, appli-
cations where data are limited and/or subject to large variability
limit the applicability and success of a NN. Soil erosion data are
inherently noisy data as there are many extraneous random factors
that can influence soil erosion. Rainfall-runoff erosion data com-
monly contains a few extreme events that add considerable variabil-
ity to the data set. In furrow irrigation, gravity can cause sloughing
of furrow side walls that have been weakened by wetting and/or
undercut by erosion, creating a flush of sediment loss. Compacted
subsurface layers such as tillage pans may stop the erosion process.
Head cuts and side cuts form when, at points of localized high
shear, the surface seal or a resistant soil layer is eroded away and
the furrow bed elevation drops. The accelerating water at the drop

Fig. 1. Schematic structure of the feed-forward neural network used in
this study
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erodes a pool that undercuts the resistant layer so the head cut
moves upstream, producing large amounts of sediment (Trout and
Neibling 1993).

Artificial neural networks have been successfully used for many
applications closely related to soil erosion such as rainfall-runoff
modeling, stream flow forecasting, groundwater modeling, water
quality modeling, water management, precipitation forecasting,
hydrological time series, and reservoir operations (ASCE 2000).
Licznar and Nearing (2003) developed a NN model to predict soil
loss from 2,879 erosion events on plots located at eight sites in the
eastern United States. They compared measured erosion with pre-
dicted values using the WEPP model and NN models trained using
a subset of the erosion events. The NN model provided a better
prediction of soil loss than the process-based WEPP model. Kim
and Gilley (2008) developed and evaluated NN models for pre-
dicting soil erosion and nutrient concentrations in runoff from
animal waste land application sites under simulated rainfall. Com-
parison of predicted versus measured values resulted in coefficient
of determination values (R2) ranging from 0.62 to 0.92. Application
of NN modeling to soil erosion prediction has not been exten-
sively studied and does not appear to have been applied to furrow
irrigation.

The objective of this project was to investigate development and
performance of a multilayer perceptron feed-forward NN to predict
sediment loss resulting from furrow irrigation using a large data set
representing a variety of soil, crop, and environmental conditions.

Materials and Methods

Furrow irrigation sediment loss data used to develop, train, validate,
and test NN models to estimate sediment loss were obtained from a
combination of published research reports, theses, and dissertations
along with field data collected by the authors over three decades
of field studies. Data sources used in this study are listed in Table 1
along with general locations where the data were collected. Collec-
tively 2,257 furrow sediment loss values were obtained covering
a wide range of soil, field, and crop conditions spanning three
continents, with the majority of the data obtained from Fornstrom
and Borrelli (1985) and the authors’ past field studies. Nine initial
independent variables were considered: freshly cultivated or previ-
ously eroded prior to irrigation; compacted by wheel traffic or
noncompacted; irrigation duration (T, h); cumulative number of
prior irrigations; furrow length (L, m), inflow (Q, Lmin−1), and

slope (S, %); and soil sand and clay fractions (%). The collec-
tive furrow irrigation sediment loss data set represents surface
irrigation–induced erosion across a wide range of hydraulic, soil,
and cropping practices (Table 2). Average furrow irrigation sedi-
ment loss for the data set was 62.8 kg per furrow with a standard
deviation of 133.5 kg per furrow, double the average value, which
reflects the inherent variability in furrow sediment loss and the wide
range of values present in the data set (0–1,879 kg per furrow).
Furrow irrigation sediment loss can vary by nearly an order of mag-
nitude (Fig. 2) between adjacent furrows in the same field with
the same inflow rates, which makes sediment loss prediction chal-
lenging with any model. The data set included 890 values for
compacted (wheel) furrows and 1,367 values for noncompacted
(nonwheel) furrows. There were 1,075 values for freshly tilled fur-
rows and 1,182 values for previously eroded furrows. There were
1,682 values for silt loam, 20 for sandy clay loam, 68 for clay loam,
203 for loam, and 284 for sandy loam soils.

Data from some sources were incomplete in regards to the se-
lected variables so some were estimated based on existing data and
standard cropping practices at the time. For example, the on-farm
Washington data set (King et al. 1984) was the most incomplete
data set used. They expressed sediment loss in kg ha−1 rather than
kg per furrow and did not specifically include furrow spacing or
irrigation duration. The data set did include Kostiakov infiltration
parameters, infiltrated depth, deep percolation, inflow rate, length,
and irrigation efficiency for each furrow evaluation. Sediment loss

Table 1. Data Sources Used in This Study along with General Locations
Where the Data Were Collected

Data source General location
Number of
furrows

Fornstrom and Borrelli
(1985)

Worland, Powell, and
Torrington, WY

745

King et al. (1984) Royal City, WA 190
Fitzsimmons et al. (1978),
O’Donkor (1978), and
Allen (1977)

Parma, Notus, Nampa, and
Kimberly, ID

59

Lou (1994) Kimberly, ID 32
Tunio (1994) Ontario, OR 108
Fernández-Gómez (1997) Córdoba and Seville,

Spain
30

Araújo (2014) Ceará, Brazil 74
Trout (unpublished) Patterson, CA 318
Bjorneberg and Trout
(unpublished)

Kimberly, ID 872

Table 2. Range of Hydraulic, Soil, and Cropping Practices in the Data Set
Used in This Study

Variable Mean
Standard
deviation Maximum Minimum

Length (m) 190 111 549 20
Slope (%) 1.35 1.1 7.0 0.05
Inflow (Lmin−1) 31.0 22.6 192 3.2
Time (h) 16.3 8.3 54 0.5
Sand fraction (%) 28.9 18.7 76.8 11.1
Clay fraction (%) 18.2 7.8 48.3 1.9
Silt fraction (%) 52.9 16.9 73.7 14.8
Sediment loss
(kg per furrow)

62.8 133.5 1,879 0.0

Furrow Number
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Fig. 2. Furrow irrigation sediment loss measured by Fornstrom and
Borrelli (1985) from a block of 12 noncompacted previously eroded
furrows irrigated at the same time with three different flow rates
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per furrow was estimated for an assumed furrow spacing of 76 cm.
Irrigation duration was estimated by volume balance using esti-
mated furrow spacing and given inflow rate, infiltrated depth, and
irrigation efficiency provided in the report. The resulting irrigation
durations were near multiples of 12 h, usually 24 h, which was
described as common irrigation times on commercial farms in the
study area, indicating realistic estimates of unknown parameters.
Recently tilled furrows have a higher infiltration rate than furrows
previously irrigated and eroded, affecting advance times and sedi-
ment loss. For the Washington data set, Kostiakov infiltration val-
ues for each furrow were used to estimate if the furrow was recently
tilled or previously eroded prior to an irrigation event. In other
cases, advance time was used to estimate if the furrow was recently
tilled or previously irrigated and eroded. The cumulative number of
prior irrigation events during the season was estimated when nec-
essary based on estimated planting date and date of the irrigation
event. For data sets where wheel traffic furrows were not specified,
the data were assumed to be from noncompacted furrows. When
not specified in published reports, soil texture was estimated based
on study location using USDA soil survey data. Uncertainty added
by estimating missing data was considered minimal and less impor-
tant than securing a data set that represented a wide range of con-
ditions across a diverse geographic area. The primary disadvantage
of estimating unknown values is degradation of prediction perfor-
mance of derived models due to addition of errors in the data set.

Neural network development software NeuroIntelligence was
used to develop, train, and evaluate NN models. 68% of the data
set was used for training, 16% for validation, and 16% for testing.
Furrow data records were assigned to the training and testing data
sets randomly. Continuous input variables were linearly scaled to a
range of −1 to 1 using the maximum and minimum values of mea-
sured variables in the composite data set (Table 2), which is a nor-
mal procedure for NN modeling to prevent large numbers from
suppressing smaller values and premature saturation of hidden neu-
rons impeding the learning algorithm (Kim and Gilley 2008).
Binary data values (compacted and cultivated) were assigned −1
for false andþ1 for true. A multilayer perceptron feed-forward NN
architecture was used to estimate furrow irrigation sediment loss.
Hidden layer neurons used a hyperbolic tangent activation function
and the single output neuron used a logistic activation function.
Neural network architectures having only one hidden layer with
up to 30 neurons were evaluated. The quasi-Newton method with
minimization of sum of square error (Haykin 2009) was used to
train the network using the training data set. The best NN architec-
ture (number of hidden layer neurons, input parameters) was
selected based on maximizing model efficiency (ME) (Nash and
Sutcliffe 1970), while using a minimum number of neurons to re-
duce risk of overtraining the NN to the data. Model efficiency,
which is commonly used for hydrologic model evaluation (Moriasi
et al. 2007), is defined as

ME ¼ 1 −
Pðyi − ypredÞ2Pðyi − yaveÞ2

ð1Þ

where yi = ith data value; ypred = model predicted value for yi; and
yave = mean of the data values. Model efficiency is similar to the
correlation coefficient associated with linear regression in that its
value ranges from −∞ to 1. A value of 1 means the model is a per-
fect fit to the data, but a negative ME value signifies that the data
mean is a better estimate of the data than the model.

The dependent variable, furrow sediment loss, was logarithmic
transformed prior to linear scaling to eliminate the prediction of
negative sediment loss (Kim and Gilley 2008). In addition to the
nine independent input variables, three functional relationships

were individually evaluated as a possible additional input variable
to improve neural network prediction performance. The functional
relationships evaluated were Q1.5, QSL−1, and QTL−1. Trial and
error searching was used to determine the best combination of input
parameters and number of hidden layer neurons.

Results and Discussion

Neural network models developed using the nine initial input
parameters resulted in good ME values (∼0.6) for logarithm trans-
formed furrow sediment loss, but when back-transformed the re-
sulting ME values were typically less than 0.4. Neural network
models developed without logarithm transformation of furrow sedi-
ment loss also resulted in ME values typically less than 0.4, indi-
cating there was no advantage in logarithm transformation of
furrow sediment loss. The use of functional relationships Q1.5,
QSL−1, and QTL−1 as input parameters also did not materially
improve prediction performance of NN models. Consequently, log-
arithm transformation of furrow sediment loss and the functional
relationships were abandoned in further development of furrow
sediment loss NN models. The large range in measured furrow
sediment loss (0.0–1,879 kg per furrow), along with an associated
high degree of variability in sediment loss among furrows during
the same irrigation (Fig. 2), appeared to limit prediction perfor-
mance of the NN models.

The potential application of a furrow irrigation sediment loss
prediction model is estimating sediment loss reduction from a
change in furrow irrigation management practice or more likely
conversion from furrow irrigation to sprinkler irrigation or micro-
irrigation. In practice, furrow irrigation sediment loss less than 5 kg
per furrow per irrigation is uncommon, with the exception of late
season irrigations, close growing crops, and sandy soils. Sediment
loss greater than 300 kg per furrow per irrigation is excessive and
certainly not sustainable due to the negative effects on agricultural
production practice and environmental impact on runoff receiving
water bodies. Therefore the furrow irrigation sediment loss data set
was filtered to include only records with sediment loss in the range
of 1–300 kg per furrow in an attempt to improve NN model pre-
diction performance. Filtering the sediment loss data set eliminated
331 data records with about 2=3 being < 1 kg per furrow and
1=3 being > 300 kg per furrow and had a minor effect on the
cumulative distribution of furrow irrigation sediment loss values
(Fig. 3) for <300 kg per furrow sediment loss. Prediction perfor-
mance of NNmodels developed using the filtered data set increased
ME to 0.55.

Comparison of NN predicted furrow irrigation sediment loss
with measured sediment loss revealed that the number of prior
irrigations had minimal influence on predicted sediment loss even
though an effect was apparent in the data set. The architecture of the
NN model was modified to consider the number of prior irrigations
as a categorical rather than a continuous variable. Examination of
the number of records for each irrigation event revealed that there
were few data values for prior irrigations greater than eight. Con-
sequently, irrigation number values greater than eight were grouped
together as a single category (eight). Irrigation number was repre-
sented in the revised NN model architecture as a one-of-N categori-
cal value. Thus, eight inputs were added to the NN model, where
irrigation number one through eight were separate inputs, with each
assigned either a −1 if false orþ1 if true depending upon irrigation
number of the data value. This increased the number of variables in
the input layer to 16. Prediction performance of the modified NN
model resulted in ME > 0.65. Substituting silt fraction for clay
fraction as an input variable along with multiple sequential training
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sessions increased prediction performance to ME∼0.70, which
likely represents about the best prediction performance that can be
expected due to variability in furrow irrigation sediment loss field
measurements in diverse regions not captured by the input varia-
bles. Additional improvements in NN model prediction perfor-
mance were not pursued as they were deemed to be incremental at
best using the chosen NN architecture.

The final NN model architecture for predicting furrow irrigation
sediment loss consisted of 16 input nodes, a single hidden layer
with 19 nodes, and 1 output layer node, conventionally denoted as
16-19-1. Prediction performance of the NN model for the filtered
training data set was ME ¼ 0.66 and ME ¼ 0.80 (Fig. 4) for the
testing data set. The prediction performance of the NN model for
the complete filtered data set (training, testing, validation com-
bined) was ME ¼ 0.70 (R2 ¼ 0.71) (Fig. 5). Visually, there ap-
peared to be a slight tendency for the NN model to underpredict
furrow irrigation sediment loss, especially for high sediment loss
conditions. There were several instances with measured sediment
loss for which the NN model predicted zero sediment loss, indicat-
ing the furrow erosion processes were not fully represented. These
uncaptured processes could include sloughing of furrow sidewalls
or presence of head cutting that can contribute substantial amounts
of sediment. These high sediment loss events are difficult to pre-
dict by any model. Absolute furrow sediment loss prediction of
the NN model was �5, �10, �20, and �30 kg per furrow for 35,
53, 72, and 85% of the combined filtered data set values, respec-
tively (Fig. 6).
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Fig. 3. Cumulative distribution of furrow irrigation sediment loss
values for the filtered data set used to develop NN models to predict
furrow sediment loss compared to the full data set
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Fig. 5. Furrow irrigation sediment loss neural network model predic-
tion performance for the combined filtered training, validation, and
testing data sets
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The furrow irrigation sediment loss NN model with 16 inputs,
19 hidden nodes, and 1 output node consists of 20 linear equations
with a total of 343 coefficients and 20 nonlinear activation func-
tions to evaluate. Solution of the NN model is impractical for a
handheld calculator but could easily be coded into a standalone

program or a procedure added to a hydrological or geographical
information system model.

The performance of the NN furrow irrigation sediment loss model
surpassed results obtained in other studies using much smaller data
sets. For example, Fornstrom and Borrelli (1985) obtained an
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Fig. 7. Histograms of continuous input variables used to develop the neural network model
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R2 ¼ 0.37 for predicting seasonal furrow sediment loss using expo-
nential regression on all furrows in their Wyoming study. They ob-
tained R2 values as great as 0.62 using subsets of the data such as
tilled noncompacted furrows. O’Donkor (1978) used multiple linear
regressions to predict seasonal sediment loss with an R2 > 0.9 based
on a single year’s data from 60 furrows on medium textured soils in
Idaho. Regression results, however, were not consistent across years
or locations, limiting the ability of these regression relationships to
predict sediment loss for fields that were not measured in the study.
Predicted annual soil loss from the SISL model correlated relatively
well with measured soil loss (R2 ¼ 0.73, ME ¼ 0.62) for 30 mea-
surements from three different studies (Bjorneberg et al. 2007). These
results, however, were skewed by a few high soil loss values from one
study and without these high values, R2 ¼ 0.40 and ME ¼ 0.37.

The NN furrow sediment loss model is an empirical model
and as such will not provide useful estimates of sediment loss for
conditions beyond the numerical limits of the data base used to
develop the model. Histograms of the continuous variables in the
data base used to develop the model (Fig. 7) provide some guid-
ance in regards to practical input value limits that can be used in the
NN model to obtain reliable estimates of sediment loss. The largest
number of the furrow observations was for furrow lengths less than
300 m (Fig. 7). The limited number of furrow observations with
furrow lengths greater 300 m limits training of the NN model to the
point that sediment loss predictions for furrow lengths greater than
400 m are likely subject to considerable error. Only about 25% of
the furrow observations were for furrow slopes greater than 1.5%
with very few observations for furrow slopes greater than 4%
(Fig. 7). The limited number of furrow observations for furrow
slopes greater than 1.5% resulted in very limited NN training for
greater furrow slopes. Approximately 98% of the furrow observa-
tions were for flow rates less than 50 Lmin−1, resulting in very lim-
ited NN training for higher furrow flow rates. Irrigation durations on
commercial farms are commonly a multiple of 12 h for convenience
with longer set times used on longer furrow lengths. There were rel-
atively few furrow observations in the data set with irrigation dura-
tions exceeding 24 h (Fig. 7), which further limited training of the
NN model for longer irrigation durations. Nearly 50% of the furrow
observations were for silt particle size fractions between 65 and 70%
(Fig. 7) despite having soil fractions spanning a large range. Simi-
larly, nearly 50% of the furrow observations were for sand particle
size fractions between 10 and 15%. From a practical application
viewpoint, furrow irrigation sediment loss predictions of the NN
model are probably limited to furrow lengths between 30 and 400 m,
slopes between 0.1 and 4%, flow rates between 5 and 75 Lmin−1,
and silt or sand particle–sized fractions between 0.1 and 0.75.

In addition to limits on input values based on the data set used
for the NN model development, combinations of inputs that are not
feasible in the physical world will result in a numerical output from
the NN model due to its empirical nature. Input combinations such
as a flow rate that will not advance to the end of the field can be
input into the NN model and a value for sediment loss will be
returned. While limits on input values can be easily imposed in
computer code, infeasible combinations of inputs are much more
difficult to screen. Inputs to the NN model should be checked for
feasibility using a surface irrigation simulation model or be from
field data of on-farm irrigation practices.

Conclusions

Artificial neural network modeling was applied to furrow irrigation
to predict sediment loss as a function of hydraulic and soil condi-
tions. A data set consisting of 1,926 furrow evaluations, spanning

three continents and a wide range of hydraulic and soil conditions,
was used to train and test a multilayer perceptron feed-forward NN
model. The final NN model consisted of 16 inputs, 19 hidden nodes
in a single hidden layer, and 1 output node. Prediction performance
of the NN model for the training data set was ME ¼ 0.66 and
ME ¼ 0.80 for the testing data set. The prediction performance for
the complete data set of 1,926 furrow evaluations was ME ¼ 0.70
with an absolute sediment loss prediction error of �5, �10, �20,
and �30 kg per furrow for 35, 53, 72, and 85% of the data set
values, respectively. Sediment loss prediction performance of the
NN model surpassed the performance of previous sediment loss
prediction models, either physical or empirical, for a much larger
data set covering a wide range of hydraulic and soil conditions and
geographic locations. The resulting furrow irrigation sediment loss
prediction model is suitable for inclusion as a component of a water
quality model.
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