
7

Biochar elemental composition 
and factors infl uencing nutrient retention

James A. Ippolito, Kurt A. Spokas, Jeffrey. M. Novak, 
Rick. D. Lentz and Keri B. Cantrell

Introduction

Pyrolysis temperature and type may be varied 
to optimize the desired biochar product. In 
general, increasing pyrolysis temperature 
tends to decrease biochar yield but increase 
biochar total C, K and Mg content, pH (ash 
content) and surface area, and decrease cat-
ion exchange capacity (CEC). Slow pyroly-
sis, in general, tends to produce biochars with 
greater N, S, available P, Ca, Mg, surface 
area and CEC as compared to fast pyrolysis.

In addition to altering temperature and 
time, the importance of feedstock source 
needs to be recognized when utilizing bio-
char in situations such as a soil conditioner 
(Sohi et al, 2009). Over the last 10 years bio-
char research has expanded exponentially 
and so have the feedstocks utilized. Biochars 
have been created from, amongst others, 
corn, wheat, barley and rice straw, switch-
grass, peanut, pecan and hazelnut shells, sug-
arcane bagasse, coconut coir, food waste, 
hardwood and softwood species, poultry and 

turkey litter, swine, dairy and cattle manure 
and biosolids. Quality of feedstock source 
infl uences end-product characteristics; in 
general, most plant-based biochars contain 
elevated C content and lesser quantities of 
necessary plant nutrients as compared to 
manure-based biochars as plants uptake only 
a small fraction of elements from soil.

Feedstock variety for biochar creation (at 
least for research purposes) has increased 
exponentially over the last decade, warrant-
ing an updated look into biochar-specifi c 
properties. Thus, this chapter focuses atten-
tion on a number of biochars and the effects 
pyrolysis temperatures and types have on 
inherent biochar nutrients (total and availa-
ble), pH and potential liming value, cation 
exchange capacity and nutrient sorption and 
entrapment. Finally, a brief section describ-
ing the creation of tailor-made biochars (from 
a mixed feedstock source) for improving bio-
char nutrient content is presented.
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Total nutrients

Although initial feedstock nutrient concentra-
tions cannot be used to quantitatively predict 
total or bioavailable biochar nutrient content, 
feedstock type used during pyrolysis has a 
strong infl uence on biochar characteristics 
(e.g., see Gaskin et al, 2008; Cantrell et al, 
2012; Kloss et al, 2012; Spokas et al, 2012a). 
For example, Gaskin et al (2008) showed that 
the amount of total N conserved from feed-
stock to biochar ranged from 27.4 per cent to 
89.6 per cent in poultry litter and pine chip 
biochars, respectively. Furthermore, the 
authors showed that the range of total P, K, 
Ca and Mg conserved varied from 60 per 
cent to 100 per cent, with bioavailability rang-
ing from about 10 per cent to upwards of 80 
per cent depending on feedstock source 
(Gaskin et al, 2008). 

Table 7.1 illustrates the importance of 
feedstock source for the determination of 
nutrients present in biochar. Most plant-
based biochars contain elevated C contents 
with lesser quantities of other essential nutri-
ents as compared to biochars created from 
manures. The results in Table 7.1 are con-
sistent with those of others (e.g. Cantrell and 
Martin, 2012). Within the plant-based bio-
chars, lower C contents are often due to 
higher concentrations of other minerals pre-
sent in the feedstock (e.g., silica mineral spe-
cies; Brewer et al, 2012). However, plant 
based biochars often have relatively lower 
nutrient contents (Cantrell et al, 2012) as 
compared to their manure-based biochar 
counterparts. This is especially true for total 
N content as the initial N content of plant-
based feedstocks is typically lower than that 
of manures; greater N concentrations in 
manure-based biochars can be attributable to 
the high protein content in the feedstock 
(Tsai et al, 2012). Concomitantly, this tends 
to place plant-based biochars at a disadvan-

tage in terms of acting as a direct source of 
nutrients (Cantrell et al, 2012). Manure-
based biochars, on the other hand, may be 
more suitable for supplying nutrients follow-
ing land application (Chapter 8).

Biochar average total nutrient content 
sorted by pyrolysis temperature, type and the 
interaction, over a range of biochar feed-
stocks, is shown in Table 7.2. In general, 
increasing pyrolysis temperature increases 
the total nutrient concentration present. 
Increasing pyrolysis temperatures typically 
leads to a loss of easily decomposable sub-
stances, volatile compounds and elements 
(e.g., O, H, N, S) and thus concentrates other 
nutrients present in biochar, including C, Ca, 
Mg and K (Kim et al, 2012; Kinney et al, 
2012). In fact, increases in nutrient concen-
trations, such as C, with increasing pyrolysis 
temperature are often associated with H and 
O loss from biochar (Antal and Grønli, 
2003). Furthermore, during pyrolysis a series 
of cleavage and polymerization reactions 
occur that result in the creation of thermally 
stable fi xed C structures (Spokas et al, 
2012a), which are directly related to increased 
biochar C content. In support of these facts, 
Bolan et al (2012) performed a sequential C 
fractionation technique, noting that the 
majority of biochar C remained in a non-
labile form (i.e., not available for microbial 
degradation). However, C availability is tem-
perature dependent with higher pyrolysis 
temperatures related to larger non-labile C 
fractions (Nelissen et al, 2012).

In addition, greater temperatures could 
cause a concentration effect due to loss of 
other elements by volatilization. For example, 
it appears that total N content reached a maxi-
mum between 300 to 399oC and decreased at 
greater temperatures (Table 7.2). Cantrell et al 
(2012) observed a similar response in manure 
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biochars, attributing their fi ndings to the 
potential presence of recalcitrant heterocyclic 
N-containing compounds. These compounds 
likely volatilized at greater pyrolysis tempera-
tures. Koutcheiko et al (2007) found a similar 
response, potentially due to loss of N contain-
ing aliphatic amino chains that are released 
upon greater heating. Loss in total P content 
with increasing pyrolysis temperatures has also 
been observed. Knicker (2007) showed that P 
containing compounds can volatilize near 
760ºC, which explains the decrease in total P 
content when feedstocks are pyrolysed at tem-
peratures greater than 800ºC. 

The infl uence of pyrolysis temperature 
on biochar’s total nutrient content differs 
depending on the length of the pyrolysis reac-
tion period (Table 7.2). More specifi cally, 
increasing temperature during slow pyrolysis 
tends to concentrate and thus increase total 
nutrient content (e.g., see Gaskin et al, 2008) 
as compared to fast pyrolysis. However, it has 
been shown that, as compared to slow pyroly-
sis, fast pyrolysis may result in an incomplete 
conversion of C to more recalcitrant forms 
(Bruun et al, 2012a). Thus, it is possible that 
the total C present in fast pyrolysis biochars is 
more readily mineralizable.

Available nutrients

In the most general sense, available nutrients 
are that portion of an element or compound 
that can be assimilated by growing plants (for 
a more detailed explanation regarding the 
concept of element bioavailability, we refer 
the reader to: Barber, 1995). In soils, various 
extractants (e.g. water, 1M KCl, 0.5M 
K2SO4, NH4OAc at pH 7, Morgan, Mehlich-
III, Mehlich-I, Bray, Olsen, DTPA, etc.) 
have been used to correlate soil extractable 
nutrients with plant uptake. This approach 
has been loosely used to distinguish elements 
that may be available from biochar.

Biochars obviously contain a plethora of 
inorganic elements, but the supply of availa-
ble nutrients can be quite variable (e.g., Lentz 
and Ippolito, 2012; Liu et al, 2012). An 
examination of research performed in 2012, 
where both available and total nutrient analy-
sis was reported, supports this contention 
(Figure 7.1). No relationship exists between 
available and total P (r2 = 0.05) across the 
range of biochars reported. In contrast, 
between 55 and 65 per cent of the K, Mg and 
Ca available from biochars can be related to 
total concentration. It is immediately obvious 
that total elemental concentration cannot 

accurately predict available nutrient content 
in biochars, as other factors such as pyrolysis 
conditions affect retained and lost nutrients.

Average available nutrients present in bio-
chars produced from various feedstocks are 
presented in Table 7.3. Although the total N 
content of biochars ranged from 0.09 to 3.3 
per cent (Table 7.1), the literature has reported 
that the amount of available N as nitrate (NO3) 
is negligible. In fact, the percentage available 
N as compared to total in all cases is < 0.01 per 
cent. Low extractable N concentrations (as 
NO3, NH4, NO2) in biochars have been fre-
quently observed (Belyaeva and Haynes, 
2012) and can be attributable to gaseous N 
loss during pyrolysis (Amonette and Joseph, 
2009). At pyrolysis temperatures < 760oC 
(Knicker, 2007), P availability is likely con-
trolled by the coordinated cations present (Al, 
Fe, Ca, Mg) and is dependent on feedstock 
(T. Wang et al, 2012). In the case of most bio-
chars, P will likely be associated with Ca and 
Mg due to biochar’s elevated pH, with some of 
these compounds in the readily available form. 
Comparison between Table 7.1 and Table 7.3 
shows that available P ranges from 0.4 to 34 
per cent of total P in biochar. Potassium also 
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142 BIOCHAR FOR ENVIRONMENTAL MANAGEMENT

typically concentrates in biochar and tends to 
be highly available. For example, Cantrell et al 
(2012) showed that total K (in combination 
with Na) concentration was an important pre-
dictor of biochar electrical conductivity, or the 
amount of salt present. This indicates that the 
form of K in biochar is water-soluble. 
Potassium availability ranged from 3.5 to 100 
per cent of the total K present (comparison 
between Table 7.1 and 7.3). 

Initial feedstock selection, however, 
strongly infl uences the fi nal product and data 
in Table 7.3 suggest that utilizing manure-
based feedstocks produces biochars with 
increased available nutrients. A comparison 
between poultry litter, peanut hulls and pine 
chips by Gaskin et al (2008) showed a similar 
trend. T. Wang et al (2012) compared nutri-
ent availability between dairy manure- and 
biosolids-derived biochars. The authors 
showed that available P increased with dairy 
manure biochar due to P being associated with 
more readily soluble Ca and Mg compounds 
present. In contrast, elevated concentrations 
of N and P in wastewater sludge-derived bio-
char, as well as other micro and macro nutri-
ents, has also been the primary reason for 
agricultural utilization of wastewater sludge 
biochar (Hossain et al, 2011). Compared to 
the widely used lignocellulosic or manure-
based biochar feedstocks, algae-based biochar 
tends to be comparatively lower in C, but 
often high in N, P and other nutrients (Bird et 
al, 2011; Torri et al, 2011). Thus, it is impru-
dent to assume that all biochars are capable of 
supplying initial plant-available nutrients to a 
crop as diverse biochars will likely have dis-
similar effects (Graber et al, 2012).

Table 7.4 illustrates how increasing tem-
perature, pyrolysis type or their interaction 
infl uence nutrient availability in biochar. In 
general, increasing pyrolysis temperature 
produced mixed results in terms of biochar 
available nutrient status. Increasing pyrolysis 
temperature has been shown to cause a 

decrease in available nutrients (Uchimiya et 
al, 2012a). For example, P availability may be 
inversely related to pyrolysis temperature 
(Table 7.4; see for example, Zheng et al, 
2013). However, other research (Chan et al, 
2007, 2008; Gaskin et al, 2008; Qayyum et 
al, 2012) showed that both feedstock material 
and pyrolysis temperature had an infl uence 
on available nutrients in biochar, with nutri-
ent content generally increasing with increas-
ing temperature (Gaskin et al, 2008). One 
should also consider the use of slow as com-
pared to fast pyrolysis when desiring increased 
available nutrients in biochar; Table 7.4 
clearly shows that available P, K, Ca and Mg 
concentrations are greater in slow as com-
pared to fast pyrolysis.

The potential is present for all biochars to 
act as a soil conditioner (to increase soil organic 
C and organic matter content, or to improve 
soil physical properties such as water holding 
capacity; Chapter 19); yet, not all biochars will 
supply relevant amounts of plant nutrients 
(Figure 7.2). For example, softwood biochars 
contain (on average) 200mg kg-1 of available P. 
Considering a medium soil P test value for irri-
gated corn in South Carolina (USA) would 
suggest that 67kg of P2O5 ha-1 would be neces-
sary for optimal crop yield. Given the P con-
centration in softwood biochar, approximately 
145Mg ha-1 would be required to supply the P 
needs of the crop. In comparison, turkey litter 
biochar, which contains seven times as much 
available P, would need to be applied at about 
20Mg ha-1. This value may still be considered 
unreasonable for production agricultural sys-
tems. For comparison sake, let us compare 
hazelnut and papermill waste biochars in terms 
of supplying available K. Average available K 
concentrations for hazelnut and papermill 
waste biochars are 890 and 20,800mg kg-1, 
respectively. Once again considering a medium 
soil K test value for irrigated corn in South 
Carolina would suggest that 67kg of K2O ha-1 
would be required by the crop. Given the K
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Figure 7.2 Intended use of biochar as a nutrient source or a soil conditioner

Table 7.3 Average biochar available nutrient concentrations† based on various feedstock sources (dry 
weight basis)

Source‡ NO3

(mg kg-1)
P
(mg kg-1)

K
(mg kg-1)

Ca
(mg kg-1)

Mg
(mg kg-1)

Corn 0.85  806 11600  1280 1340

Wheat/barley 1.05  596 14000   379  112

Rice straw/husk  ---¶   ---    ---   840  552

Sorghum  ---   99.5    ---    ---   ---

Soybean stover  ---   ---    ---    ---   ---

Peanut shell  ---   ---    ---    ---   ---

Pecan shell  ---   ---    ---    ---   ---

Hazelnut shell  ---   ---   889   270   28.0

Switchgrass  ---   ---    ---    ---   ---

Bagasse  ---   76.0    ---    ---   ---

Coconut coir  ---   ---    ---    ---   ---

Food waste  ---   --- 13300  5060 1090

Other (grass, leaves, orange peel, other 
green wastes) 0.92  307  8370   680  574

Hardwoods 0.12   25.1  1620   652  116

Softwoods  ---  200  1020   684  103

Papermill waste  ---   ---   117 20800  234
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Poultry manure/litter  ---  448 13800  5830 1280

Turkey manure/litter  --- 1400    ---    ---   ---

Swine manure  ---  225    ---    ---   ---

Dairy manure  ---  240 13500  7940 3170

Cattle manure  ---  320    ---    ---   ---

Biosolids/sewage sludge  ---   ---    ---    ---   ---
† Available NO3 data based on water, 1M KCl and 0.5M K2SO4 extractions. Available P, K, Ca and Mg data based on water, 
NH4OAc at pH 7, Morgan and Mehlich-III extractions.
‡ Data obtained from cited 2012 published data (~80 articles; see note at end of chapter before the references). 
¶ --- = Below detection or not determined.

Table 7.4 Average biochar available nutrient concentrations† based on pyrolysis temperature, 
pyrolysis type and pyrolysis temperature by type (dry weight basis)

NO3

(mg kg-1)
P
(mg kg-1)

K
(mg kg-1)

Ca
(mg kg-1)

Mg
(mg kg-1)

Pyrolysis temperature‡

<300oC  ---¶  ---   ---   ---   ---

300–399oC 1.10 544 7580 4880 1240

400–499oC 0.36 196 5570 2850  425

500–599oC 0.37 219 7470 3640  694

600–699oC 0.10  51.3 5450 5020  915

700–799oC  --- 511   ---   ---   ---

>800oC  --- 76.0   ---   ---   ---

Pyrolysis type‡

Fast 1.05  51.4 4740 3100  374

Slow 0.34 314 6420 3660  713

Pyrolysis temp. × type‡

Fast, 300–499oC 1.05  35.4 4740 3100  374

Fast, 500–699oC  ---  ---   ---   ---   ---

Fast, 700–900oC  ---  ---   ---   ---   ---

Slow, <300oC  ---  ---   ---   ---   ---

Slow, 300–499oC 0.38 303 6260 3480  679

Slow, 500–699oC 0.30 183 6620 4260  792

Slow, 700–900oC  --- 449   ---   ---   ---
† Available NO3 data based on water, 1M KCl and 0.5M K2SO4 extractions. Available P, K, Ca and Mg data based on water, 
NH4OAc at pH 7, Morgan and Mehlich-III extractions.
‡ Data obtained from cited 2012 published data (~80 articles; see note at end of chapter before the references). 
¶ --- = Below detection or not determined.
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concentration in both materials, it would 
require 41.4 and 1.8Mg ha-1 of hazelnut or 
papermill waste biochar to meet the crop K 

demands. It becomes readily apparent that not 
all biochars are created equal in terms of sup-
plying plant available nutrients.

pH and liming value

Pyrolysis temperature is known to have an 
impact on biochar pH. Specifi cally, increasing 
pyrolysis temperature removes acidic func-

tional groups and the ash content increases, 
causing biochar to be more basic (Novak et al, 
2009; Li et al, 2002; Ahmad et al, 2012; 

Table 7.5 Average biochar pH, calcium carbonate equivalent (CCE), surface area and cation 
exchange capacity (CEC) based on various feedstock sources

Source† pH CCE
(%)

Surface Area
(m2 g-1)

CEC
(mmolc kg-1)

Corn 9.27  --- 107.2 607

Wheat/barley 8.80  ---  26.65 103

Rice straw/husk 9.17  ---  42.15 212

Sorghum  ---‡  ---    ---‡  ---

Soybean stover 9.30  ---   4.375  ---

Peanut shell 8.52  --- 115.1  ---

Pecan shell 6.97  --- 111.5  ---

Hazelnut shell 7.86  --- 467.5  83.8

Switchgrass 9.28  ---  52.96  ---

Bagasse 7.59  --- 113.6 115

Coconut coir  ---  --- 114.8  ---

Food waste 9.09  ---   0.803  81.0

Other (grass, leaves, orange peel, other 
green wastes)

8.72  --- 119.8 290

 
Hardwoods 7.94  --- 171.3 138

Softwoods 7.48  --- 194.2 145

Papermill waste 9.13  ---  10.08  52.0

Poultry manure/litter 9.80 18.4  50.35 538

Turkey manure/litter 8.95  ---  24.70  ---

Swine manure 9.37  ---  26.89  ---

Dairy manure 9.45  ---  33.38 342

Cattle manure 8.99 13.4  73.27  ---

Biosolids/sewage sludge 6.90 12.9 102.1  23.6
† Data obtained from cited 2012 published data (~80 articles; see note at end of chapter before the references) ‡ --- = Below 
detection or not determined.
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Table 7.6 Average biochar pH, calcium carbonate equivalent (CCE), surface area and cation exchange 
capacity (CEC) based on pyrolysis temperature, pyrolysis type and pyrolysis temperature by type

Source† pH CCE
(%)

Surface Area
(m2 g-1)

CEC
(mmolc kg-1)

Pyrolysis temperature†

<300oC  5.01  7.95   1.686 327

300–399oC  7.60 13.7  65.36 371

400–499oC  8.10 17.2  83.98 191

500–599oC  8.71 15.6 111.8 283

600–699oC  9.00  ---‡ 217.0 126

700–799oC  9.83 21.0 176.2  39.0

>800oC 10.8  --- 213.8  44.0

Pyrolysis type†

Fast  8.38  ---  69.38  28.8

Slow  8.50 14.9 124.4 250

Pyrolysis temp. × type†

Fast, 300–499oC  8.33  ---  44.74  28.8

Fast, 500–699oC  7.70  ---  40.99 ND

Fast, 700–900oC 10.1  --- 178.2 ND

Slow, <300oC  5.01  7.95   1.686 327

Slow, 300–499oC  7.81 14.9  81.32 268

Slow, 500–699oC  9.09 15.6 180.5 218

Slow, 700–900oC 10.1 21.0 189.8 41.5
† Data obtained from cited 2012 published data (~80 articles; see note at end of chapter before the references) ‡ --- = Below 
detection or not determined.

Cantrell et al, 2012). Enders et al (2012) 
showed that as pyrolysis temperature 
increased from 300 to 600ºC, pH increased in 
cow manure, annual biomass and woody bio-
mass-based biochars. Furthermore, at greater 
pyrolysis temperatures nutrients in mineral 
form, or salts (such as KOH, NaOH, MgCO3, 
CaCO3, organic metal salts) separate from the 
solid organic matrix, resulting in elevated pH 
values (Cao and Harris, 2010; Knicker, 2007). 
In plant-based biochars, pH is lower as com-
pared to manure-based biochars (Table 7.5). 
This is further supported by data presented 

by Enders et al (2012) and conforms to indi-
vidual study progressions found by Rajkovich 
et al (2012).

Because of its basic pH, biochar has been 
used to ameliorate acidic soil conditions 
(Yuan and Xu, 2011; Uchimiya et al, 2012b), 
thus it could serve as a liming agent (Kloss et 
al, 2012). The liming effect may be quanti-
fi ed by biochar’s calcium carbonate equiva-
lency (CCE, the value biochar has related to 
an equivalent quantity of CaCO3). Although 
data is largely lacking for individual biochars 
based on feedstock (Table 7.5), increasing 
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pyrolysis temperature increases the CCE of 
biochar (Table 7.6). This effect has been 
illustrated by several studies (Hass et al, 2012; 
T. Wang et al, 2012). In addition, steam acti-

vation during pyrolysis can increase biochar 
pH as well as calcium carbonate equivalent 
(CCE) as compared to non-activated bio-
chars (Hass et al, 2012).

Nutrient retention

Biochar can retain nutrients via several mech-
anisms including electrostatic adsorption and 
the retention of dissolved nutrients in water 
(i.e., entrapment; Lehmann et al, 2003). 
More specifi cally, the ability of some biochars 
to retain nutrients is attributed to its large sur-
face area and quantity of functional groups 
and to great porosity. Surface area and poros-
ity in biochars can vary greatly depending on 
feedstock and pyrolysis conditions (Verheijen 
et al, 2010). Jeong et al (2012) showed that 
hardwood biochar (comprised mostly of 
sweetgum and oak chips) had a greater spe-
cifi c surface area as compared to softwood 
biochar (comprised mostly of southern yel-
low and loblolly pine chips) at 242 versus 
159m2 g-1, respectively. However, when aver-
aged across all hardwood and softwood bio-
char data published in 2012, little difference 
between the two exist (Table 7.5). In fact, it 
is diffi cult to draw any conclusions with 
respect to biochar surface area based on feed-
stock alone. Thus, it is diffi cult to draw any 
conclusions of nutrient retention based on 
feedstock either.

However, specifi c surface area tends to 
increase with pyrolysis temperature (Table 
7.6) as illustrated by numerous studies 
(Ahmad et al, 2012; Lu et al, 2012; Cantrell et 
al, 2012; Chen et al, 2012; Hass et al, 2012; 
Shen et al, 2012) and may lead to greater 
nutrient retention. The increase in specifi c 
surface area with pyrolysis temperature is 
most often associated with both physical and 
chemical changes in the biochar. For example, 
Ahmad et al (2012) utilized scanning electron 
microscopy to study soybean stover and pea-

nut shell biochar structural changes following 
pyrolysis. Cell pore diameter was reduced, 
internal pores appeared and a subsequent 
increase in surface area occurred. Furthermore, 
it is possible that at lower pyrolysis tempera-
tures tars block micropores; thus, yielding a 
lower surface area biochar compared to higher 
temperature biochars where these same tars 
are volatilized leading to an increase in surface 
area (Munoz et al, 2003; Kloss et al, 2012). 
Chen et al (2008) showed that increasing 
pyrolysis temperatures removed H and O 
containing functional groups, greatly increas-
ing biochar surface areas. Chen et al (2012) 
explained that increasing pyrolysis tempera-
ture decomposed cellulose and lignin, also 
leading to an increase in surface area. In addi-
tion, steam, NaOH, or H3PO4 activation of 
biochar has been shown to remove low-vola-
tile tar constituents (in the case of steam acti-
vation) or create holes in the skeletal C 
structure (in the case of NaOH or H3PO4 acti-
vation) with a concomitant increase in specifi c 
surface area (e.g., Borchard et al, 2012b). The 
aforementioned processes where pore size is 
reduced and surface area is increased may 
lead to an increase in nutrient retention.

Comparing fast versus slow pyrolysis bio-
chars in terms of surface area, one may assume 
that fast pyrolysis biochars would contain a 
greater surface area and thus exhibit greater 
nutrient retention, as these biochars require a 
smaller initial feedstock particle size as com-
pared to slow pyrolysis. However, it is not 
apparent that smaller initial particle size infl u-
ences specifi c surface area and in fact it appears 
quite the opposite holds true (Table 7.6). 
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Others have both speculated and shown that 
fast pyrolysis biochars have low surface areas 
(<8.0m2 g-1; Boateng, 2007; Hilber et al, 2012) 
as compared to slow pyrolysis biochars. This 
likely is due to incomplete physico-chemical 
transformation during fast pyrolysis. In addi-
tion, during fast pyrolysis gases contained 

within the biochar can escape at different rates 
(dependent on a combination of temperature, 
temperature ramp speed and residence time) 
and disrupt the C skeletal complex, thus 
decreasing surface area and likely the amount 
of nutrients that can be retained by the biochar 
(Chapter 5).

Cation Exchange Capacity (CEC)

Biochar CEC is developed when the product 
is exposed to oxygen and water, creating oxy-
genated surface functional groups (Briggs et 
al, 2012; Chan and Xu, 2009; Chapter 9). 
Similar to soils, biochar CEC represents its 
ability to electrostatically sorb or attract cati-
ons. Although biochars are organically based 
and therefore should carry pH dependent 
charge much like soil organic matter, increas-
ing pyrolysis temperature tends to cause a 
decrease in CEC; this phenomenon was 
observed by both Lin et al (2012) and 
Rajkovich et al (2012). This is due to the 
removal of organic functional groups (i.e., 
more volatile matter) at greater pyrolysis tem-
peratures (Gaskin et al, 2008; Cantrell and 
Martin, 2012; Kloss et al, 2012). Indeed, 
increasing pyrolysis temperatures increase 
lignin and cellulose decomposition in feed-
stock materials (Novak et al, 2009) leading to 
a loss of functional groups. Thus, the poten-
tial exists for lower initial nutrient retention 
with biochars created at higher versus lower 
pyrolysis temperatures (Ippolito et al, 2012a). 
However, nutrient retention may also be a 
function of short- and long-term oxidation 
once biochar is introduced into the environ-
ment (Quilliam et al, 2012; Chapter 10).

Specifi c nutrient sorption research has 
been performed with Cu, NH3 and NH4. 
Borchard et al (2012a) suggested that oxygen-
containing functional groups present in bio-
char are responsible for overall sorption. In 

their work, Cu was found to interact chemi-
cally with biochar and physical interaction 
(i.e., entrapment) was negligible. A similar 
response was observed for hexavalent Cr 
reduction by coconut coir biochar (Shen et al, 
2012). Ippolito et al (2012b) showed that, in 
part, Cu was bound to biochar via organic 
ligand functional groups, yet some carbonate/
oxide precipitation did occur. Uchimiya et al 
(2012b) showed removal of leachable ali-
phatic and N-containing heteroaromatic func-
tional groups with elevated pyrolysis 
temperatures, which positively correlated with 
Cu retention in manure-based biochars. 
Biochar sorption of nitrogenous compounds 
has also been suggested (Dempster et al, 
2012a; Kammann et al, 2012; Sarkhot et al, 
2012). Ding et al (2010) and Hina et al (2010) 
noted that NH4 sorption onto biochar occurred 
primarily through ion exchange, coulombic 
forces, chemisorptions-ammonia fi xation or 
associations with S-functional groups. 
Taghizadeh-Toosi et al (2012) showed that 
biochars with lower pH values sorbed greater 
NH4 (due to transformation of NH3 into NH4) 
than higher pH biochars, suggesting chemical 
rather than physical attraction. Nelissen et al 
(2012) suggested that NH4 sorption onto bio-
char was due to its elevated CEC. As CEC is 
directly related to surface functional groups, 
changes in functional group chemistries are 
likely the main reason for differences in N 
sorption (Spokas et al, 2012a).
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Nutrient entrapment

Research regarding physical nutrient entrap-
ment by biochar has been primarily limited to 
NO3 studies, most likely because biochar typ-
ically has very little anion exchange capacity 
(Laird et al, 2008). Cheng et al (2012) and 
Jones et al (2012) found that wheat straw or 
hardwood biochar had negligible effect on 
retaining NO3. In contrast, Case et al (2012) 
suggested that NO3 may be held by biochar 
via physical means. Further, Prendergast-
Miller et al (2011) proposed that mass solu-
tion fl ow into biochar particles could 
potentially hold NO3. The authors showed 
that NO3 was the dominant form of N 
extracted (using 1M KCl) from biochar and 
was likely held within biochar pore solution, 
physically trapped within the biochar particle 
itself. Kameyama et al (2012) showed that 
NO3 sorption by sugar cane bagasse biochar 

increased dramatically when pyrolysis tem-
perature exceeded 700oC, with sorption 
uncorrelated to micropore volume. This sug-
gested that physical entrapment did not play 
a role, as well as that high pyrolysis tempera-
tures formed base-functional groups capable 
of sorbing NO3. A similar response was 
observed by Yao et al (2012) and by Cheng 
et al (2008) with newly made biochar. 
However, pyrolysis temperatures greater than 
700ºC are atypical; thus, the potential anion 
exchange response shown by Kameyama et al 
(2012) and Yao et al (2012) would likely not 
be observed in most biochars outlined in this 
chapter. This conclusion is further supported 
by the fi ndings of Hollister et al (2013) who 
found little to no sorption of NO3 (or PO4) 
with either freshly created biochars or follow-
ing several hydration events.

Designing relevant biochars

The variability in biochars’ elemental compo-
sition, as outlined in this chapter, corrobo-
rates the notion that not all biochars are 
created equal (Atkinson et al, 2010; Novak 
and Busscher, 2012, Harvey et al, 2012). The 
inherent variability of biochars when used as 
a soil amendment suggests that the produc-
tion of biochars can be designed for specifi c 
situations (as cited by Ippolito et al, 2012a; 
Novak et al, 2014). For example, Novak and 
Busscher (2012) presented an outline for 
how biochar chemical and physical character-
istics can be tailored for use to resolve specifi c 
limitations in sandy soils. Biochars produced 
from animal manures, which have inherently 
high concentrations of plant nutrients, can be 
blended with feedstocks containing lower 
quantities of nutrients (Table 7.7). In this 
regard, the high P and Ca contents in bio-

chars pyrolysed from swine solids could be 
reduced by blending with switchgrass bio-
char. An elemental compositional analysis of 
the blended biochars using these two differ-
ent feedstocks exemplifi es the dramatic 
reductions in P and Ca contents. Other 
manure feedstocks (i.e., poultry litter) that 
contain high P contents can also be blended 
with a nutrient poor feedstock (e.g., pine 
chips) to obtain designer biochars that are 
more nutrient-balanced (Novak et al, 2014). 
In turn, this biochar blended from poultry lit-
ter + pine chips can be used on soils without 
dramatically increasing plant available P. A 
similar approach was suggested by Tsai et al 
(2012) with woody-based biochars (contain-
ing mostly C) to create an optimal biochar 
end-product that positively infl uences nutri-
ent availability. In addition, biochars could 
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Table 7.7 The total (EPA Method 3050a) P and Ca concentration in pure feedstocks and in 
biochars made at specifi c blending ratios (unpublished data)

Feedstocks Blending ratio (w w-1)† P
(mg kg-1)

Ca
(mg kg-1)

Switchgrass (SG) 100:0 384 2130

Swine solids (SS) 100:0 27,026 23,214

SG:SS 80:20 14,831 13,538

SG:SS 90:10 8254 5535

† Blending ratio determined to balance a corn crop P uptake requirement (Novak et al, 2013).

be blended with non-pyrolysed feedstocks to 
achieve a desired end-product. Overall, tailor-
made biochars could potentially fi ll the need of 
supplying nutrients as well as improving soil 
physical properties as outlined in Figure 7.2.

Accepting that not all biochars are the 
same will require a paradigm shift in their cre-

ation and specifi c uses as soil amendments. As 
outlined by Novak et al (2014) the tailor-made 
or designer biochar concept is still in its infancy 
and will require further evaluation of biochar 
performance from various feedstocks and in 
other agricultural soils containing diverse fer-
tility or physical characteristics. 

Conclusions

Based on evidence provided in this chapter, it 
is obvious that pyrolysis temperature and type 
can have dramatic effects on both total and 
available nutrients in biochar. Increasing tem-
perature during slow pyrolysis appears to con-
centrate total nutrient content in biochars as 
compared to fast pyrolysis. As compared to 
slow pyrolysis, fast pyrolysis may result in an 
incomplete conversion of C to more recalci-
trant forms leading to a more readily mineral-
izable biochar. The relation between pyrolysis 
temperature or type and available nutrients in 
biochar is less clear. In most instances correla-
tions do not exist; however, one may draw 

conclusions between increasing pyrolysis tem-
peratures, increasing concentrations of K, Mg 
and Ca in the fi nal product and the availability 
of these elements (~55–65 per cent available).

In addition, initial feedstock selection 
strongly infl uences the fi nal product. Data 
provided in this chapter suggest that utilizing 
manure-based feedstocks produce biochars 
with increased available nutrients as com-
pared to plant-based feedstocks. Thus, in 
addition to pyrolysis temperature and type, 
proper feedstock selection is crucial when 
considering the intended end-use for biochar 
(see Chapter 8 for more details).
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Notes to Tables

Data in Tables 7.1, 7.3 and 7.5

Corn data averaged from: Brewer et al, 2012; 
Enders and Lehmann, 2012; Feng et al, 2012; 
Freddo et al, 2012; Hale et al, 2012; Jia et al, 
2012; Kammann et al, 2012; Kinney et al, 2012; 
Nelissen et al, 2012; and Rajkovich et al, 2012.

Wheat/barley data averaged from: Bruun et al, 
2012a, b; Bruun and El-Zehery, 2012; Cheng et 
al, 2012; Kloss et al, 2012; Solaiman et al, 2012; 
Sun et al, 2012; Yoo and Kang, 2012; and Zhang 
et al, 2012a, b.

Rice straw/husk data averaged from: Lu et al, 
2012; Mekuria et al, 2012; T. Wang et al, 2012; 
and R. Zheng et al, 2012.

Sorghum data obtained from: Schnell et al, 2012.

Soybean stover data obtained from: Ahmad et al, 
2012.

Peanut shell data averaged from: Ahmad et al, 
2012; Kammann et al, 2012; Karlen and Kerr, 
2012; Novak et al, 2012; and Yao et al, 2012.

Pecan shell data averaged from: Ippolito et al, 
2012b and Novak et al, 2012.

Hazelnut shell data obtained from: Rajkovich et al, 
2012.

Switchgrass data averaged from: Hale et al, 2012; 
Ippolito et al, 2012a; and Novak et al, 2012.

Bagasse data averaged from: Kameyama et al, 
2012; and Yao et al, 2012.

Coconut coir (i.e. husk fi ber) data obtained from: 
Shen et al, 2012.

Food waste data averaged from: Hale et al, 2012 
and Rajkovich et al, 2012.

Other waste data averaged from: Bolan et al, 
2012; Choppala et al, 2012; Galvez et al, 2012; 
Hale et al, 2012; Hilber et al, 2012; Kinney et al, 
2012; and Oh et al, 2012.

Hardwood data averaged from: Ballantine et al, 
2012; Borchard et al, 2012a; Case et al, 2012; 
Dempster et al, 2012a, b; Enders and Lehmann, 
2012; Freddo et al, 2012; Graber et al, 2012; 
Hale et al, 2012; Jeong et al, 2012; Jones et al, 
2012; Kammann et al, 2012; Kinney et al, 2012; 
Kloss et al, 2012; Lentz and Ippolito, 2012; Lin 
et al, 2012; Novak et al, 2012; Pereira et al, 2012; 
Rajkovich et al, 2012; Sarkhot et al, 2012; 
Solaiman et al, 2012; Xu et al, 2012a; Yao et al, 
2012; and J. Zheng et al, 2012.

Softwood data averaged from: Chen et al, 2012; 
Freddo et al, 2012; Hale et al, 2012; Hilber et al, 
2012; Jeong et al, 2012; Karlen and Kerr, 2012; 
Kim et al, 2012; Kloss et al, 2012; Rajkovich et al, 
2012; Robertson et al, 2012; Spokas et al, 2012b; 
and Taghizadeh-Toosi et al, 2012.

Papermill waste data averaged from: Hale et al, 
2012 and Rajkovich et al, 2012.

Poultry manure/litter data averaged from: 
Belyaeva and Haynes, 2012; Cantrell et al, 2012; 
Choppala et al, 2012; Enders and Lehmann, 
2012; Hass et al, 2012; Novak et al, 2012; 
Rajkovich et al, 2012; Revell, Maguire and 
Agblevor, 2012a, b; Sun et al, 2012; and 
Uchimiya et al., 2012a.

Turkey manure/litter data averaged from: 
Cantrell et al, 2012 and Karlen and Kerr, 2012.

Swine manure data averaged from: Cantrell and 
Martin, 2012; Cantrell et al, 2012; Tsai et al, 
2012; and Yoo and Kang, 2012.

Dairy manure data averaged from: Cantrell et al, 
2012; Hale et al, 2012; Rajkovich et al, 2012; and 
Streubel et al., 2012.

Cattle manure data averaged from: Cantrell et al, 
2012; Schouten et al, 2012; and T. Wang et al, 
2012.

Biosolids/sewage sludge data averaged from: 
Mendez et al, 2012; Oh et al, 2012; and T. Wang 
et al, 2012.
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Data in Tables 7.2, 7.4 and 7.6

Data for Pyrolysis Temperature averaged 
from:

<300oC: Chen et al, 2012; Lu et al, 2012; Hale et 
al, 2012; Ippolito et al, 2012a.; Novak et al, 2012; 
Shen et al, 2012; and T. Wang et al, 2012.

300–399oC: Ahmad et al, 2012; Cantrell and 
Martin, 2012; Chen et al, 2012; Choppala et al, 
2012; Enders and Lehmann, 2012; Feng et al, 
2012; Freddo et al, 2012; Graber et al, 2012; Hale 
et al, 2012; Kim et al, 2012; Kinney et al, 2012; 
Lin et al, 2012; Lu et al, 2012; Nelissen et al, 2012; 
Novak et al, 2012; Rajkovich et al, 2012; Sarkhot 
et al, 2012; Shen et al, 2012; Taghizadeh-Toosi et 
al, 2012; Uchimiya et al, 2012a; T. Wang et al, 
2012; Yao et al, 2012; and Yoo and Kang, 2012.

400–499oC: Ballantine et al, 2012; Belyaeva and 
Haynes, 2012; Borchard et al, 2012a, b; Briggs et 
al, 2012; Bruun and El-Zehery, 2012; Case et al, 
2012; Cheng et al, 2012; Dempster et al, 2012b; 
Hale et al, 2012, Jia et al, 2012; Jones et al, 2012; 
Kameyama et al, 2012; Karlen and Kerr, 2012; 
Kim et al, 2012; Kinney et al, 2012; Kloss et al, 
2012; Lin et al, 2012; Novak et al, 2012; Oh et al, 
2012; Pereira et al, 2012; Rajkovich et al, 2012; 
Revell, Maguire and Agblevor, 2012a, b; Spokas 
et al, 2012b; Sun et al, 2012; Tsai et al, 2012; 
Robertson et al, 2012; J. Wang et al, 2012; 
T. Wang et al, 2012; Yao et al, 2012; and Zhang 
et al, 2012a, b.

500–599oC: Brewer et al, 2012; Bruun et al, 
2012a, b; Busch et al, 2012; Chen et al, 2012; 
Choppala et al, 2012; Feng et al, 2012; Freddo et 
al, 2012; Galvez et al, 2012; Hale et al, 2012; 
Ippolito et al, 2012a; Kameyama et al, 2012; 
Kammann et al, 2012; Karlen and Kerr, 2012; 
Kim et al, 2012; Kinney et al, 2012; Kloss et al, 
2012; Lentz and Ippolito, 2012; Lin et al, 2012; 
Lu et al, 2012; Mendez et al, 2012; Nelissen et al, 
2012; Novak et al, 2012; Qayyum et al, 2012; 
Rajkovich et al, 2012; Shen et al, 2012; Schouten 
et al, 2012; Schnell et al, 2012; Spokas et al, 
2012b; Struebel et al, 2012; Taghizadeh-Toosi et 
al, 2012; Tsai et al, 2012; Uchimiya et al, 2012a; 
T. Wang et al, 2012; J. Zheng et al, 2012; and 
R. Zheng et al, 2012.

600–699oC: Brewer et al, 2012; Carlsson et al, 
2012; Dempster et al, 2012a; Enders and 
Lehmann, 2012; Freddo et al, 2012; Hale et al, 
2012; Hilber et al, 2012; Kameyama et al, 2012; 
Kinney et al, 2012; Lin et al, 2012; Major et al, 
2012; Oh et al, 2012; Rajkovich et al, 2012; Shen 
et al, 2012; Solaiman et al, 2012; Tsai et al, 2012; 
Uchimiya et al, 2012a; Xu et al, 2012a; and Yao 
et al, 2012. 

700–799oC: Ahmad et al, 2012; Cantrell and 
Martin, 2012; Cantrell et al, 2012; Chen et al, 
2012; Hale et al, 2012; Hilber et al, 2012; Ippolito 
et al, 2012b; Kameyama et al, 2012; Kammann et 
al, 2012; Kinney et al, 2012; Novak et al, 2012; 
Oh et al, 2012; Tsai et al, 2012; and Yoo and 
Kang, 2012.

>800oC: Graber et al, 2012; Hale et al, 2012; 
Jeong et al, 2012; Kameyama et al, 2012; Karlen 
and Kerr, 2012; Tsai et al, 2012; and Uchimiya et 
al, 2012a.

Data for Pyrolysis Type averaged from:

Fast: Ballantine et al, 2012; Borchard et al, 2012a; 
Brewer et al, 2012; Bruun et al, 2012a, b; Cheng 
et al, 2012; Dempster et al, 2012b; Freddo et al, 
2012; Hale et al, 2012; Jeong et al, 2012; Kim et 
al, 2012; Lentz and Ippolito, 2012; Novak et al, 
2012; Revel, Maguire and Agblevor, 2012a, b; 
Robertson et al, 2012; Schnell et al, 2012; 
Schouten et al, 2012; and J. Zheng et al, 2012.

Slow: Ahmad et al, 2012; Borchard et al, 2012a; 
Briggs et al, 2012; Bruun et al, 2012a, b; Bruun 
and El-Zehery, 2012; Busch et al, 2012; Cantrell 
and Martin, 2012; Cantrell et al, 2012; Case et al, 
2012; Chen et al, 2012; Choppala et al, 2012; 
Dempster et al, 2012a, b; Enders and Lehmann, 
2012; Feng et al, 2012; Freddo et al, 2012; Galvez 
et al, 2012; Graber et al, 2012; Hale et al, 2012; 
Hass et al, 2012, Ippolito et al, 2012a, b; Jones et 
al, 2012; Kameyama et al, 2012; Kinney et al, 
2012; Kloss et al, 2012, Lin et al, 2012; Lu et al, 
2012; Major et al, 2012; Mekuria et al, 2012; 
Mendez et al, 2012; Nelissen et al, 2012; Novak et 
al, 2012; Oh et al, 2012, Pereira et al, 2012; 
Qayyum et al, 2012; Rajkovich et al, 2012; 
Sarkhot et al, 2012; Shen et al, 2012; Struebel et 
al, 2012; Sun et al, 2012; Taghizadeh-Toosi et al, 
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2012; Tsai et al, 2012; Uchimiya et al, 2012a; 
T. Wang et al, 2012; Yao et al, 2012; Yoo and 
Kang, 2012; a, b., 2012; and R. Zheng et al, 2012.

Data for Pyrolysis Temperature X Type 
averaged from:

Fast:

300–499oC: Ballantine et al, 2012; Borchard et al, 
2012a; Cheng et al, 2012; Dempster et al, 2012a; 
Hale et al, 2012; Kim et al, 2012; Revell, Maguire 
and Agblevor, 2012a, b; and Robertson et al, 2012.

500–699oC: Brewer et al, 2012; Bruun et al, 
2012a, b; Kim et al, 2012; Lentz and Ippolito, 
2012; Novak et al, 2012; Schouten et al, 2012; 
and J. Zheng et al, 2012.

700–900oC: Hale et al, 2012 and Jeong et al, 2012.

Slow:

<300oC: Chen et al, 2012; Lu et al, 2012; Hale et 
al, 2012; Ippolito et al, 2012a; Novak et al, 2012; 
Shen et al, 2012; and T. Wang et al, 2012.

300–499oC: Ahmad et al, 2012; Borchard et al, 
2012b; Briggs et al, 2012; Bruun and El-Zehery, 
2012; Cantrell and Martin, 2012; Cantrell et al, 
2012; Case et al, 2012; Chen et al, 2012; 
Choppala et al, 2012; Dempster et al., 2012b; 
Enders and Lehmann, 2012; Feng et al, 2012; 

Freddo et al, 2012; Graber et al, 2012; Hale et al, 
2012; Hass et al, 2012; Jones et al, 2012; 
Kameyama et al, 2012; Kinney et al, 2012; Kloss 
et al, 2012; Lin et al, 2012; Lu et al, 2012; 
Nelissen et al, 2012; Novak et al, 2012; Oh et al, 
2012; Pereira et al, 2012; Rajkovich et al, 2012; 
Sarkhot et al, 2012; Shen et al, 2012; Sun et al, 
2012; Taghizadeh-Toosi et al, 2012; Tsai et al, 
2012; T. Wang et al, 2012; Yao et al, 2012; Yoo 
and Kang, 2012; and Zhang et al, 2012a, b.

500–699oC: Bruun et al, 2012a, b; Busch et al, 
2012; Choppala et al, 2012; Dempster et al, 
2012a; Enders and Lehmann, 2012; Feng et al, 
2012; Freddo et al, 2012; Hale et al, 2012; 
Ippolito et al, 2012a; Kameyama et al, 2012; 
Kinney et al, 2012; Kloss et al, 2012; Lin et al, 
2012; Lu et al, 2012; Major et al, 2012; Mendez 
et al, 2012; Nelissen et al, 2012; Novak et al, 
2012; Oh et al, 2012; Qayyum et al, 2012; 
Rajkovich et al, 2012; Shen et al, 2012; 
Taghizadeh-Toosi et al, 2012; Tsai et al, 2012; 
Uchimiya et al, 2012a; T. Wang et al, 2012; Yao 
et al, 2012; and R. Zheng et al, 2012. 

700–900oC: Ahmad et al, 2012; Cantrell and 
Martin, 2012; Cantrell et al, 2012; Chen et al, 2012; 
Hale et al, 2012; Hass et al, 2012; Ippolito et al, 
2012b; Kameyama et al, 2012; Kinney et al, 2012; 
Novak et al, 2012; Oh et al, 2012; Tsai et al, 2012; 
Yoo and Kang, 2012; and Uchimiya et al, 2012a.
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